scholarly journals BST-2 Expression Modulates Small CD4-Mimetic Sensitization of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity

2017 ◽  
Vol 91 (11) ◽  
Author(s):  
Jonathan Richard ◽  
Jérémie Prévost ◽  
Benjamin von Bredow ◽  
Shilei Ding ◽  
Nathalie Brassard ◽  
...  

ABSTRACT Antibodies recognizing conserved CD4-induced (CD4i) epitopes on human immunodeficiency virus type 1 (HIV-1) Env and able to mediate antibody-dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from most HIV-1-infected individuals. These antibodies preferentially recognize Env in its CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-1-infected cells to ADCC mediated by HIV-positive (HIV+) sera. Importantly, this mechanism of immune evasion can be circumvented with small-molecule CD4 mimetics (CD4mc) that are able to transition Env into the CD4-bound conformation and sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. However, HIV-1 developed additional mechanisms to avoid ADCC, including Vpu-mediated BST-2 antagonism, which decreases the overall amount of Env present at the cell surface. Accordingly, BST-2 upregulation in response to alpha interferon (IFN-α) was shown to increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu. Here we show that BST-2 upregulation by IFN-β and interleukin-27 (IL-27) also increases the surface expression of Env and thus boosts the ability of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals. IMPORTANCE HIV-1 evolved sophisticated strategies to conceal Env epitopes from ADCC-mediating antibodies present in HIV+ sera. Vpu-mediated BST-2 downregulation was shown to decrease ADCC responses by limiting the amount of Env present at the cell surface. This effect of Vpu was shown to be attenuated by IFN-α treatment. Here we show that in addition to IFN-α, IFN-β and IL-27 also affect Vpu-mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-infected cells in the presence of CD4mc. These findings may inform strategies aimed at HIV prevention and eradication.

2018 ◽  
Vol 92 (13) ◽  
pp. e00484-18 ◽  
Author(s):  
Jérémie Prévost ◽  
Jonathan Richard ◽  
Halima Medjahed ◽  
Audrey Alexander ◽  
Jennifer Jones ◽  
...  

ABSTRACTHIV-1-infected cells expressing envelope glycoproteins (Env) in the CD4-bound conformation on their surfaces are targeted by antibody-dependent cellular cytotoxicity (ADCC) mediated by CD4-induced (CD4i) antibodies and sera from HIV-1-infected individuals (HIV+sera). By downregulating the surface expression of CD4, Nef prevents Env-CD4 interaction, thus protecting HIV-1-infected cells from ADCC. HIV-1 infectious molecular clones (IMCs) are widely used to measure ADCC. In order to facilitate the identification of infected cells and high-throughput ADCC analysis, reporter genes (e.g., theRenillaluciferase [LucR] gene) are often introduced into IMC constructs. We evaluated the susceptibility of HIV-1-infected CD4+T lymphocytes to ADCC using a panel of parental IMCs and derivatives that expressed the LucR reporter gene, utilizing different molecular strategies, including one specifically designed to retain Nef expression. We found that in some of these constructs, Nef expression in CD4+T cells was suboptimal, and consequently, CD4 downregulation was incomplete. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Strikingly, protection from ADCC was observed when cells were infected with the parental IMC, which exhibited strong CD4 downregulation. This discrepancy between the parental and Nef-impaired viruses was independent of the strains of Env expressed, but rather, it was correlated with the levels of CD4 surface expression. Overall, our results indicate that caution should be taken when selecting IMCs for ADCC measurements and that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.IMPORTANCEIn-depth understanding of the susceptibility of HIV-1-infected cells to ADCC might help establish correlates of vaccine protection and guide the development of HIV-1 vaccine strategies. Different ADCC assays have been developed, including those using infectious molecular clones (IMCs) carrying a LucR reporter gene that greatly facilitates large-scale quantitative analysis. We previously reported different molecular strategies for introducing LucR while maintaining Nef expression and function and, consequently, CD4 surface downregulation. Here, we demonstrate that utilizing IMCs that exhibit impaired Nef expression can have undesirable consequences due to incomplete CD4 downregulation. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Overall, our results indicate that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Sai Priya Anand ◽  
Jonathan R. Grover ◽  
William D. Tolbert ◽  
Jérémie Prévost ◽  
Jonathan Richard ◽  
...  

ABSTRACT To minimize immune responses against infected cells, HIV-1 limits the surface expression of its envelope glycoprotein (Env). Here, we demonstrate that this mechanism is specific for the Env conformation and affects the efficiency of antibody-dependent cellular cytotoxicity (ADCC). Using flow cytometry and confocal microscopy, we show that broadly neutralizing antibodies (bNAbs) targeting the “closed” conformation of Env induce its internalization from the surface. In contrast, non-neutralizing antibodies (nNAbs) are displayed on the cell surface for prolonged period of times. The bNAb-induced Env internalization can be decreased by blocking dynamin function, which translates into higher susceptibilities of infected cells to ADCC. Our results suggest that antibody-mediated Env internalization is a mechanism used by HIV-1 to evade immune responses against the “closed” conformation of Env expressed on HIV-1-infected cells. IMPORTANCE HIV-1 has evolved to acquire several strategies to limit the exposure of its envelope glycoproteins (Env) on the surface of infected cells. In this study, we show that antibody-induced Env internalization is conformation specific and reduces the susceptibility of infected cells to antibody-dependent cellular cytotoxicity (ADCC). Thus, a better understanding of this mechanism might help develop antibodies with improved capacities to mediate ADCC.


2002 ◽  
Vol 76 (8) ◽  
pp. 4125-4130 ◽  
Author(s):  
Enrique Argañaraz ◽  
María José Cortés ◽  
Sydney Leibel ◽  
Juan Lama

ABSTRACT The CD4 receptor is required for the entry of human immunodeficiency virus (HIV) into target cells. It has long been known that Nef, Env, and Vpu participate in the removal of the viral receptor from the cell surface. Recently, it has been proposed that the HIV type 1 (HIV-1) Vpr protein may also play a role in the downmodulation of CD4 from the surfaces of infected cells (L. Conti, B. Varano, M. C. Gauzzi, P. Matarrese, M. Federico, W. Malorani, F. Belardelli, and S. Gessani, J. Virol. 74:10207-10211, 2000). To investigate the possible role of Vpr in the downregulation of the viral receptor Vpr alleles from HIV-1 and simian immunodeficiency virus were transiently expressed in transformed T cells and in 293T fibroblasts, and their ability to modulate surface CD4 was evaluated. All Vpr alleles efficiently arrested cells in the G2 stage of the cell cycle. However, none of the tested Vpr proteins altered the expression of CD4 on the cell surface. In comparison, HIV-1 Nef efficiently downmodulated surface CD4 in all the experimental settings. Transformed T cells and primary lymphocytes were challenged with wild-type, Nef-defective, and Vpr-defective viruses. A significant reduction in the HIV-induced downmodulation of surface CD4 was observed in viruses lacking Nef. However, Vpr-deletion-containing viruses showed no defect in their ability to remove CD4 from the surfaces of infected cells. Our results indicate that Vpr does not play a role in the HIV-induced downmodulation of the CD4 receptor.


1998 ◽  
Vol 72 (1) ◽  
pp. 286-293 ◽  
Author(s):  
Osama Alsmadi ◽  
Shermaine A. Tilley

ABSTRACT The characteristics of antibody-dependent cellular cytotoxicity (ADCC) directed by a panel of human and chimpanzee antienvelope (anti-Env) monoclonal antibodies (MAbs) of different epitope specificities were studied; this was accomplished by using target cells expressing human immunodeficiency virus type 1 (HIV-1) Envs of either primary or laboratory-adapted strains. Human MAbs of similar apparent affinities (1 × 109 to 2 × 109 liters/mol) against either a “cluster II”-overlapping epitope of gp41 or against the CD4 binding site, V3 loop, or C5 domain of gp120 directed substantial and comparable levels of specific lysis against targets infected with laboratory-adapted strains of HIV-1. As expected, those MAbs specific for relatively conserved regions of Env generally exhibited ADCC activity against a broader range of HIV-1 strains than those directed against variable epitopes. Significant ADCC activities of selected MAbs against primary isolate Env-expressing cells were demonstrated. In addition, a new ADCC epitope in the V2 domain of gp120 was defined. CD56+ cells were demonstrated to be the effector cells in these studies by fluorescence-activated cell sorting followed by ADCC assays. Notably, all anti-Env MAbs tested in this study, including MAbs directed against each of the known neutralization epitope clusters in gp120, directed significant levels of ADCC against targets expressing Env of one or more HIV-1 strains. These results imply that many, if not most, HIV-1-neutralizing human Abs of high affinity (≥3 × 108 liters/mol in these studies) and of the immunoglobulin G1 (IgG1) subclass (i.e., the predominate IgG subclass) are capable of directing ADCC. Since neutralizing Abs have been associated with long-term survival following HIV-1 infection, this suggests that ADCC activity may be beneficial in vivo.


2009 ◽  
Vol 83 (24) ◽  
pp. 13032-13036 ◽  
Author(s):  
Mariana G. Bego ◽  
Mathieu Dubé ◽  
Johanne Mercier ◽  
Éric A. Cohen

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpu enhances virus particle release by counteracting a host factor that retains virions at the surfaces of infected cells. It was recently demonstrated that cellular protein BST-2/CD317/Tetherin restricts HIV-1 release in a Vpu-dependent manner. Calcium-modulating cyclophilin ligand (CAML) was also proposed to be involved in this process. We investigated whether CAML is involved in cell surface expression of Tetherin. Here, we show that CAML overexpression in permissive Cos-7 cells or CAML depletion in restrictive HeLa cells has no effect on HIV-1 release or on Tetherin surface expression, indicating that CAML is not required for Tetherin-mediated restriction of HIV-1 release.


2009 ◽  
Vol 83 (14) ◽  
pp. 7117-7128 ◽  
Author(s):  
Nadine Laguette ◽  
Christelle Brégnard ◽  
Jérôme Bouchet ◽  
Alexandre Benmerah ◽  
Serge Benichou ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef interferes with the endocytic machinery to modulate the cell surface expression of CD4. However, the basal trafficking of CD4 is governed by different rules in the target cells of HIV-1: whereas CD4 is rapidly internalized from the cell surface in myeloid cells, CD4 is stabilized at the plasma membrane through its interaction with the p56 lck kinase in lymphoid cells. In this study, we showed that Nef was able to downregulate CD4 in both lymphoid and myeloid cell lines but that an increase in the internalization rate of CD4 could be observed only in lymphoid cells. Expression of p56 lck in nonlymphoid CD4-expressing cells restores the ability of Nef in order to increase the internalization rate of CD4. Concurrent with this observation, the expression of a p56 lck -binding-deficient mutant of CD4 in lymphoid cells abrogates the Nef-induced acceleration of CD4 internalization. We also show that the expression of Nef causes a decrease in the association of p56 lck with cell surface-expressed CD4. Regardless of the presence of p56 lck , the downregulation of CD4 by Nef was followed by CD4 degradation. Our results imply that Nef uses distinct mechanisms to downregulate the cell surface expression levels of CD4 in either lymphoid or myeloid target cells of HIV-1.


2014 ◽  
Vol 89 (1) ◽  
pp. 545-551 ◽  
Author(s):  
Maxime Veillette ◽  
Mathieu Coutu ◽  
Jonathan Richard ◽  
Laurie-Anne Batraville ◽  
Olina Dagher ◽  
...  

ABSTRACTRecent studies have linked antibody Fc-mediated effector functions with protection or control of human immunodeficiency type 1 (HIV-1) and simian immunodeficiency (SIV) infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in the Thai RV144 vaccine trial was suggested to correlate with decreased HIV-1 acquisition risk. These antibodies recently were found to recognize HIV envelope (Env) epitopes exposed upon Env-CD4 interaction. CD4 downregulation by Nef and Vpu, as well as Vpu-mediated BST-2 antagonism, were reported to modulate exposure of those CD4-induced HIV-1 Env epitopes and were proposed to play a role in reducing the susceptibility of infected cells to ADCC mediated by this class of antibodies. Here, we report the high prevalence of antibodies recognizing CD4-induced HIV-1 Env epitopes in sera from HIV-1-infected individuals, which correlated with their ability to mediate ADCC responses against HIV-1-infected cells, exposing these Env epitopes at the cell surface. Furthermore, our results indicate that Env variable regions V1, V2, V3, and V5 do not represent a major determinant for ADCC responses mediated by sera from HIV-1-infected individuals. Altogether, these findings suggest that HIV-1 tightly controls the exposure of certain Env epitopes at the surface of infected cells in order to prevent elimination by Fc-effector functions.IMPORTANCEHere, we identified a particular conformation of HIV-1 Env that is specifically targeted by ADCC-mediating antibodies present in sera from HIV-1-infected individuals. This observation suggests that HIV-1 developed sophisticated mechanisms to minimize the exposure of these epitopes at the surface of infected cells.


1997 ◽  
Vol 185 (7) ◽  
pp. 1295-1306 ◽  
Author(s):  
Thomas Kerkau ◽  
Igor Bacik ◽  
Jack R. Bennink ◽  
Jonathan W. Yewdell ◽  
Thomas Hünig ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a small integral membrane phosphoprotein with two established functions: degradation of the viral coreceptor CD4 in the endoplasmic reticulum (ER) and augmentation of virus particle release from the plasma membrane of HIV-1–infected cells. We show here that Vpu is also largely responsible for the previously observed decrease in the expression of major histocompatibility complex (MHC) class I molecules on the surface of HIV-1–infected cells. Cells infected with HIV-1 isolates that fail to express Vpu, or that express genetically modified forms of Vpu that no longer induce CD4 degradation, exhibit little downregulation of MHC class I molecules. The effect of Vpu on class I biogenesis was analyzed in more detail using a Vpu-expressing recombinant vaccinia virus (VV). VV-expressed Vpu induces the rapid loss of newly synthesized endogenous or VV-expressed class I heavy chains in the ER, detectable either biochemically or by reduced cell surface expression. This effect is of similar rapidity and magnitude as the VV-expressed Vpu-induced degradation of CD4. Vpu had no discernible effects on cell surface expression of VV-expressed mouse CD54, demonstrating the selectivity of its effects on CD4 and class I heavy chains. VVexpressed Vpu does not detectably affect class I molecules that have been exported from the ER. The detrimental effects of Vpu on class I molecules could be distinguished from those caused by VV-expressed herpes virus protein ICP47, which acts by decreasing the supply of cytosolic peptides to class I molecules, indicating that Vpu functions in a distinct manner from ICP47. Based on these findings, we propose that Vpu-induced downregulation of class I molecules may be an important factor in the evolutionary selection of the HIV-1–specific vpu gene by contributing to the inability of CD8+ T cells to eradicate HIV-1 from infected individuals.


2001 ◽  
Vol 75 (10) ◽  
pp. 4664-4672 ◽  
Author(s):  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Benhur Lee ◽  
George J. Leslie ◽  
Melissa D. Sanchez ◽  
...  

ABSTRACT Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection.


1999 ◽  
Vol 73 (2) ◽  
pp. 1350-1361 ◽  
Author(s):  
Clarisse Berlioz-Torrent ◽  
Barbara L. Shacklett ◽  
Lars Erdtmann ◽  
Lelia Delamarre ◽  
Isabelle Bouchaert ◽  
...  

ABSTRACT The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved.


Sign in / Sign up

Export Citation Format

Share Document