scholarly journals Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1

2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Dingani Nkosi ◽  
Lauren A. Howell ◽  
Mujeeb R. Cheerathodi ◽  
Stephanie N. Hurwitz ◽  
Deanna C. Tremblay ◽  
...  

ABSTRACTEBV latent membrane protein 1 (LMP1) is released from latently infected tumor cells in small membrane-enclosed extracellular vesicles (EVs). Accumulating evidence suggests that LMP1 is a major driver of EV content and functions. LMP1-modified EVs have been shown to influence recipient cell growth, migration, differentiation, and regulation of immune cell function. Despite the significance of LMP1-modified exosomes, very little is known about how this viral protein enters or manipulates the host EV pathway. In this study, LMP1 deletion mutants were generated to assess protein regions required for EV trafficking. Following transfection of LMP1 or mutant plasmids, EVs were collected by differential centrifugation, and the levels of specific cargo were evaluated by immunoblot analysis. The results demonstrate that, together, the N terminus and transmembrane region 1 of LMP1 are sufficient for efficient sorting into EVs. Consistent with these findings, a mutant lacking the N terminus and transmembrane domains 1 through 4 (TM5-6) failed to be packaged into EVs, and exhibited higher colocalization with endoplasmic reticulum and early endosome markers than the wild-type protein. Surprisingly, TM5-6 maintained the ability to colocalize and form a complex with CD63, an abundant exosome protein that is important for the incorporation of LMP1 into EVs. Other mutations within LMP1 resulted in enhanced levels of secretion, pointing to potential positive and negative regulatory mechanisms for extracellular vesicle sorting of LMP1. These data suggest new functions of the N terminus and transmembrane domains in LMP1 intra- and extracellular trafficking that are likely downstream of an interaction with CD63.IMPORTANCEEBV infection contributes to the development of cancers, such as nasopharyngeal carcinoma, Burkitt lymphoma, Hodgkin's disease, and posttransplant lymphomas, in immunocompromised or genetically susceptible individuals. LMP1 is an important viral protein expressed by EBV in these cancers. LMP1 is secreted in extracellular vesicles (EVs), and the transfer of LMP1-modified EVs to uninfected cells can alter their physiology. Understanding the cellular machinery responsible for sorting LMP1 into EVs is limited, despite the importance of LMP1-modified EVs. Here, we illustrate the roles of different regions of LMP1 in EV packaging. Our results show that the N terminus and TM1 are sufficient to drive LMP1 EV trafficking. We further show the existence of potential positive and negative regulatory mechanisms for LMP1 vesicle sorting. These findings provide a better basis for future investigations to identify the mechanisms of LMP1 targeting to EVs, which could have broad implications in understanding EV cargo sorting.

Virology ◽  
2001 ◽  
Vol 282 (2) ◽  
pp. 278-287 ◽  
Author(s):  
Sarah M.S. Blake ◽  
Aristides G. Eliopoulos ◽  
Christopher W. Dawson ◽  
Lawrence S. Young

2003 ◽  
Vol 77 (6) ◽  
pp. 3749-3758 ◽  
Author(s):  
William F. Coffin ◽  
Timothy R. Geiger ◽  
Jennifer M. Martin

ABSTRACT The latent membrane protein 1 (LMP-1) oncoprotein of Epstein-Barr virus (EBV) is a constitutively active, CD40-like cell surface signaling protein essential for EBV-mediated human B-cell immortalization. Like ligand-activated CD40, LMP-1 activates NF-κB and Jun kinase signaling pathways via binding, as a constitutive oligomer, to tumor necrosis factor receptor-associated factors (TRAFs). LMP-1's lipid raft association and oligomerization have been linked to its activation of cell signaling pathways. Both oligomerization and lipid raft association require the function of LMP-1's polytopic multispanning transmembrane domain, a domain that is indispensable for LMP-1's growth-regulatory signaling activities. We have begun to address the sequence requirements of the polytopic hydrophobic transmembrane domain for LMP-1's signaling and biochemical activities. Here we report that transmembrane domains 1 and 2 are sufficient for LMP-1's lipid raft association and cytostatic activity. Transmembrane domains 1 and 2 support NF-κB activation, albeit less potently than does the entire polytopic transmembrane domain. Interestingly, LMP-1's first two transmembrane domains are not sufficient for oligomerization or TRAF binding. These results suggest that lipid raft association and oligomerization are mediated by distinct and separable activities of LMP-1's polytopic transmembrane domain. Additionally, lipid raft association, mediated by transmembrane domains 1 and 2, plays a significant role in LMP-1 activation, and LMP-1 can activate NF-κB via an oligomerization/TRAF binding-independent mechanism. To our knowledge, this is the first demonstration of an activity's being linked to individual membrane-spanning domains within LMP-1's polytopic transmembrane domain.


Intervirology ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 69-80
Author(s):  
Hai-Yu Wang ◽  
Lingling Sun ◽  
Ping Li ◽  
Wen Liu ◽  
Zhong-Guang Zhang ◽  
...  

<b><i>Objective:</i></b> To investigate the relationship between hematologic tumors and Epstein-Barr virus (EBV)-encoded small noncoding RNA (EBER) variations as well as latent membrane protein 1 (LMP1) variations. <b><i>Methods:</i></b> Patients with leukemia and myelodysplastic syndrome (MDS) were selected as subjects. Genotypes 1/2 and genotypes F/f were analyzed using the nested PCR technology, while EBER and LMP1 subtypes were analyzed by the nested PCR and DNA sequencing. <b><i>Results:</i></b> Type 1 was more dominant than type 2, found in 59 out of 82 (72%) leukemia and in 31 out of 35 (88.6%) MDS, while type F was more prevalent than type f in leukemia (83/85, 97.6%) and MDS (29/31, 93.5%) samples. The distribution of EBV genotypes 1/2 was not significantly different among leukemia, MDS, and healthy donor groups, neither was that of EBV genotypes F/f. EB-6m prototype was the dominant subtype of EBER in leukemia and MDS (73.2% [30/41] and 83.3% [10/12], respectively). The frequency of EB-6m was lower than that of healthy people (96.7%, 89/92), and the difference was significant (<i>p</i> &#x3c; 0.05). China 1 subtype was the dominant subtype of LMP1 in leukemia and MDS (70% [28/40] and 90% [9/10], respectively), and there was no significant difference in the distribution of LMP1 subtypes among the 3 groups (<i>p</i> &#x3e; 0.05). <b><i>Conclusion:</i></b> The distribution of EBV 1/2, F/f, EBER, and LMP1 subtypes in leukemia and MDS was similar to that in the background population in Northern China, which means that these subtypes may be rather region-restricted but not associated with leukemia and MDS pathogenesis.


Cancer ◽  
2010 ◽  
Vol 116 (4) ◽  
pp. 880-887 ◽  
Author(s):  
Jeffrey J. Tarrand ◽  
Michael J. Keating ◽  
Apostolia M. Tsimberidou ◽  
Susan O'Brien ◽  
Rocco P. LaSala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document