scholarly journals Human Immunodeficiency Virus Infection Alters Tumor Necrosis Factor Alpha Production via Toll-Like Receptor-Dependent Pathways in Alveolar Macrophages and U1 Cells

2008 ◽  
Vol 82 (16) ◽  
pp. 7790-7798 ◽  
Author(s):  
Marlynne Q. Nicol ◽  
Jean-Marie Mathys ◽  
Albertina Pereira ◽  
Kevin Ollington ◽  
Michael H. Ieong ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-positive persons are predisposed to pulmonary infections, even after receiving effective highly active antiretroviral therapy. The reasons for this are unclear but may involve changes in innate immune function. HIV type 1 infection of macrophages impairs effector functions, including cytokine production. We observed decreased constitutive tumor necrosis factor alpha (TNF-α) concentrations and increased soluble tumor necrosis factor receptor type II (sTNFRII) in bronchoalveolar lavage fluid samples from HIV-positive subjects compared to healthy controls. Moreover, net proinflammatory TNF-α activity, as measured by the TNF-α/sTNFRII ratio, decreased as HIV-related disease progressed, as manifested by decreasing CD4 cell count and increasing HIV RNA (viral load). Since TNF-α is an important component of the innate immune system and is produced upon activation of Toll-like receptor (TLR) pathways, we hypothesized that the mechanism associated with deficient TNF-α production in the lung involved altered TLR expression or a deficit in the TLR signaling cascade. We found decreased Toll-like receptor 1 (TLR1) and TLR4 surface expression in HIV-infected U1 monocytic cells compared to the uninfected parental U937 cell line and decreased TLR message in alveolar macrophages (AMs) from HIV-positive subjects. In addition, stimulation with TLR1/2 ligand (Pam3Cys) or TLR4 ligand (lipopolysaccharide) resulted in decreased intracellular phosphorylated extracellular signal-regulated kinase and subsequent decreased transcription and expression of TNF-α in U1 cells compared to U937 cells. AMs from HIV-positive subjects also showed decreased TNF-α production in response to these TLR2 and TLR4 ligands. We postulate that HIV infection alters expression of TLRs with subsequent changes in mitogen-activated protein kinase signaling and cytokine production that ultimately leads to deficiencies of innate immune responses that predispose HIV-positive subjects to infection.

2000 ◽  
Vol 44 (2) ◽  
pp. 405-407 ◽  
Author(s):  
Pascal Clayette ◽  
Marc Martin ◽  
Vincent Beringue ◽  
Nathalie Dereuddre-Bosquet ◽  
Karim T. Adjou ◽  
...  

ABSTRACT Amphotericin B derivatives, such as MS-8209, have been evaluated as a therapeutic approach to human immunodeficiency virus (HIV) infection. We show that MS-8209, like amphotericin B, increases tumor necrosis factor alpha (TNF-α) mRNA expression and TNF-α production and consequently HIV replication in human macrophages. These effects confirm the pharmacological risk associated with the administration of amphotericin B or its derivatives to HIV-infected patients.


2009 ◽  
Vol 83 (9) ◽  
pp. 4140-4152 ◽  
Author(s):  
Shu-Jung Chang ◽  
Jye-Chian Hsiao ◽  
Stephanie Sonnberg ◽  
Cheng-Ting Chiang ◽  
Min-Hsiang Yang ◽  
...  

ABSTRACT Tumor necrosis factor alpha (TNF-α) activates the nuclear factor κB (NF-κB) signaling pathway that regulates expression of many cellular factors playing important roles in innate immune responses and inflammation in infected hosts. Poxviruses employ many strategies to inhibit NF-κB activation in cells. In this report, we describe a poxvirus host range protein, CP77, which blocked NF-κB activation by TNF-α. Immunofluorescence analyses revealed that nuclear translocation of NF-κB subunit p65 protein in TNF-α-treated HeLa cells was blocked by CP77. CP77 did so without blocking IκBα phosphorylation, suggesting that upstream kinase activation was not affected by CP77. Using GST pull-down, we showed that CP77 bound to the NF-κB subunit p65 through the N-terminal six-ankyrin-repeat region in vitro. CP77 also bound to Cullin-1 and Skp1 of the SCF complex through a C-terminal 13-amino-acid F-box-like sequence. Both regions of CP77 are required to block NF-κB activation. We thus propose a model in which poxvirus CP77 suppresses NF-κB activation by two interactions: the C-terminal F-box of CP77 binding to the SCF complex and the N-terminal six ankyrins binding to the NF-κB subunit p65. In this way, CP77 attenuates innate immune response signaling in cells. Finally, we expressed CP77 or a CP77 F-box deletion protein from a vaccinia virus host range mutant (VV-hr-GFP) and showed that either protein was able to rescue the host range defect, illustrating that the F-box region, which is important for NF-κB modulation and binding to SCF complex, is not required for CP77's host range function. Consistently, knocking down the protein level of NF-κB did not relieve the growth restriction of VV-hr-GFP in HeLa cells.


2007 ◽  
Vol 76 (2) ◽  
pp. 812-819 ◽  
Author(s):  
Takashi Ukai ◽  
Hiromichi Yumoto ◽  
Frank C. Gibson ◽  
Caroline Attardo Genco

ABSTRACT The receptor activator of NF-κB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodontal disease. However, the contribution of macrophage-expressed TLRs to osteoclastogenesis has not been defined. In this study, we defined a requirement for TLR2 in tumor necrosis factor-alpha (TNF-α)-elicited osteoclastogenesis in response to exposure to P. gingivalis. Culture supernatant (CS) fluids from P. gingivalis-stimulated macrophages induced bone marrow macrophage-derived osteoclastogenesis. This activity was dependent on TNF-α and occurred independently of RANKL, interleukin-1β (IL-1β), and IL-6. CS fluids from P. gingivalis-stimulated TLR2−/− macrophages failed to express TNF-α, and these fluids induced significantly less osteoclast formation compared with that of the wild-type or the TLR4−/− macrophages. In addition, P. gingivalis exposure induced up-regulation of TLR2 expression on the cell surface of macrophages, which was demonstrated to functionally react to reexposure to P. gingivalis, as measured by a further increase in TNF-α production. These results demonstrate that macrophage-dependent TLR2 signaling is crucial for TNF-α-dependent/RANKL-independent osteoclastogenesis in response to P. gingivalis infection. Furthermore, the ability of P. gingivalis to induce the cell surface expression of TLR2 may contribute to the chronic inflammatory state induced by this pathogen.


2004 ◽  
Vol 24 (11) ◽  
pp. 4743-4756 ◽  
Author(s):  
Marcela A. Hermoso ◽  
Tetsuya Matsuguchi ◽  
Kathleen Smoak ◽  
John A. Cidlowski

ABSTRACT Tumor necrosis factor alpha (TNF-α) and glucocorticoids are widely recognized as mutually antagonistic regulators of adaptive immunity and inflammation. Surprisingly, we show here that they cooperatively regulate components of innate immunity. The Toll-like receptor 2 (TLR2) gene encodes a transmembrane receptor critical for triggering innate immunity. Although TLR2 mRNA and protein are induced by inflammatory molecules such as TNF-α, we show that TLR2 is also induced by the anti-inflammatory glucocorticoids in cells where they also regulate MKP-1 mRNA and protein levels. TNF-α and glucocorticoids cooperate to regulate the TLR2 promoter, through the involvement of a 3′ NF-κB site, a STAT-binding element, and a 3′ glucocorticoid response element (GRE). Molecular studies show that the IκBα superrepressor or a STAT dominant negative element prevented TNF-α and dexamethasone stimulation of TLR2 promoter. Similarly, an AF-1 deletion mutant of glucocorticoid receptor or ablation of a putative GRE notably reduced the cooperative regulation of TLR2. Using chromatin immunoprecipitation assays, we demonstrate that all three transcription factors interact with both endogenous and transfected TLR2 promoters after stimulation by TNF-α and dexamethasone. Together, these studies define novel signaling mechanism for these three transcription factors, with a profound impact on discrimination of innate and adaptive immune responses.


2003 ◽  
Vol 71 (8) ◽  
pp. 4456-4462 ◽  
Author(s):  
Ursula Deiters ◽  
Marina Gumenscheimer ◽  
Chris Galanos ◽  
Peter F. Mühlradt

ABSTRACT Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-α could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-α shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-α doses in TLR4−/− but not in TLR2−/− mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 μg. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-α, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use.


2006 ◽  
Vol 74 (7) ◽  
pp. 4274-4281 ◽  
Author(s):  
Soumaya Bennouna ◽  
Woraporn Sukhumavasi ◽  
Eric Y. Denkers

ABSTRACT Neutrophils are well-known to rapidly respond to infection through chemotactic infiltration at sites of inflammation, followed by rapid release of microbicidal molecules, chemokines, and proinflammatory cytokines. For tumor necrosis factor alpha (TNF-α), we recently found that neutrophils contain intracellular pools of the cytokine and display the capacity to upregulate transcriptional activity of the gene during lipopolysaccharide (LPS) stimulation. We now show that triggering of mouse peritoneal neutrophils with Toll-like receptor 2 (TLR2), TLR4, and TLR9 ligands, but not ligands of TLR3, induces upregulation of surface membrane TNF-α. However, neutrophils infected with the protozoan Toxoplasma gondii displayed an inability to respond fully in terms of TLR ligand-induced increases in membrane TNF-α expression. Infected neutrophils failed to display decreased levels of intracellular TNF-α upon LPS exposure. In contrast to intermediate inhibitory effects in nontreated neutrophils, T. gondii induced a complete blockade in LPS-induced surface TNF-α expression in the presence of the protein synthesis inhibitor cycloheximide. Despite these inhibitory effects, the parasite did not affect LPS-induced upregulation of TNF-α gene transcription. Collectively, the results show that Toxoplasma prevents TLR ligand-triggered mobilization of TNF-α to the neutrophil surface, revealing a novel immunosuppressive activity of the parasite.


2003 ◽  
Vol 10 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Tetsuya Matsuguchi ◽  
Akimitsu Takagi ◽  
Takeshi Matsuzaki ◽  
Masato Nagaoka ◽  
Kimika Ishikawa ◽  
...  

ABSTRACT Lactobacilli are nonpathogenic gram-positive inhabitants of microflora. At least some Lactobacillus strains have been postulated to have health beneficial effects, such as the stimulation of the immune system. Here we examined the stimulatory effects of lactobacilli on mouse immune cells. All six heat-killed Lactobacillus strains examined induced the secretion of tumor necrosis factor alpha (TNF-α) from mouse splenic mononuclear cells, albeit to various degrees. When fractionated subcellular fractions of Lactobacillus casei were tested for NF-κB activation and TNF-α production in RAW264.7, a mouse macrophage cell line, the activity was found to be as follows: protoplast > cell wall ≫ polysaccharide-peptidoglycan complex. Both crude extracts and purified lipoteichoic acids (LTAs) from two Lactobacillus strains, L. casei and L. fermentum, significantly induced TNF-α secretion from RAW264.7 cells and splenocytes of C57BL/6, C3H/HeN, and C3H/HeJ mice but not from splenocytes of C57BL/6 TLR2 −/− mice. Lactobacillus LTA induced activation of c-Jun N-terminal kinase activation in RAW264.7 cells. Furthermore, in HEK293T cells transected with a combination of CD14 and Toll-like receptor 2 (TLR2), NF-κB was activated in response to Lactobacillus LTA. Taken together, these data suggest that LTAs from lactobacilli elicit proinflammatory activities through TLR2.


2020 ◽  
Author(s):  
Wenna Gao ◽  
Ruilin Zhu ◽  
liu yang

Background: Mounting evidence has suggested tumor necrosis factor-alpha (TNF-α) can promote the development of diabetic retinopathy (DR), and TNF-α gene variants may influence DR risk. However, the results are quite different. Objectives: To comprehensively address this issue, we performed the meta-analysis to evaluate the association of TNF-α-308 G/A and -238 G/A polymorphism with DR. Method: Data were retrieved in a systematic manner and analyzed using STATA Statistical Software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Allelic and genotypic comparisons between cases and controls were evaluated. Results: For the TNF-α-308 G/A polymorphism, overall analysis suggested a marginal association with DR [the OR(95%CI) of (GA versus GG), (GA + AA) versus GG, and (A versus G) are 1.21(1.04, 1.41), 1.20(1.03, 1.39), and 1.14(1.01, 1.30), respectively]. And the subgroup analysis indicated an enhanced association among the European population. For the TNF-α-238 G/A polymorphism, there was mild correlation in the entire group [the OR(95%CI) of (GA versus GG) is 1.55(1.14,2.11) ], which was strengthened among the Asian population. Conclusion: The meta-analysis suggested that -308 A and -238 A allele in TNF-α gene potentially increased DR risk and showed a discrepancy in different ethnicities.


Sign in / Sign up

Export Citation Format

Share Document