scholarly journals Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation

2016 ◽  
Vol 90 (12) ◽  
pp. 5830-5844 ◽  
Author(s):  
Laurie Ludgate ◽  
Kuancheng Liu ◽  
Laurie Luckenbaugh ◽  
Nicholas Streck ◽  
Stacey Eng ◽  
...  

ABSTRACTMultiple subunits of the hepatitis B virus (HBV) core protein (HBc) assemble into an icosahedral capsid that packages the viral pregenomic RNA (pgRNA). The N-terminal domain (NTD) of HBc is sufficient for capsid assembly, in the absence of pgRNA or any other viral or host factors, under conditions of high HBc and/or salt concentrations. The C-terminal domain (CTD) is deemed dispensable for capsid assembly although it is essential for pgRNA packaging. We report here that HBc expressed in a mammalian cell lysate, rabbit reticulocyte lysate (RRL), was able to assemble into capsids when (low-nanomolar) HBc concentrations mimicked those achieved under conditions of viral replicationin vivoand were far below those used previously for capsid assemblyin vitro. Furthermore, at physiologically low HBc concentrations in RRL, the NTD was insufficient for capsid assembly and the CTD was also required. The CTD likely facilitated assembly under these conditions via RNA binding and protein-protein interactions. Moreover, the CTD underwent phosphorylation and dephosphorylation events in RRL similar to those seenin vivowhich regulated capsid assembly. Importantly, the NTD alone also failed to accumulate in mammalian cells, likely resulting from its failure to assemble efficiently. Coexpression of the full-length HBc rescued NTD assembly in RRL as well as NTD expression and assembly in mammalian cells, resulting in the formation of mosaic capsids containing both full-length HBc and the NTD. These results have important implications for HBV assembly during replication and provide a facile cell-free system to study capsid assembly under physiologically relevant conditions, including its modulation by host factors.IMPORTANCEHepatitis B virus (HBV) is an important global human pathogen and the main cause of liver cancer worldwide. An essential component of HBV is the spherical capsid composed of multiple copies of a single protein, the core protein (HBc). We have developed a mammalian cell-free system in which HBc is expressed at physiological (low) concentrations and assembles into capsids under near-physiological conditions. In this cell-free system, as in mammalian cells, capsid assembly depends on the C-terminal domain (CTD) of HBc, in contrast to other assembly systems in which HBc assembles into capsids independently of the CTD under conditions of nonphysiological protein and salt concentrations. Furthermore, the phosphorylation state of the CTD regulates capsid assembly and RNA encapsidation in the cell-free system in a manner similar to that seen in mammalian cells. This system will facilitate detailed studies on capsid assembly and RNA encapsidation under physiological conditions and identification of antiviral agents that target HBc.

2021 ◽  
Author(s):  
Haitao Liu ◽  
Ji Xi ◽  
Jianming Hu

Hepatitis B virus (HBV) capsid or core protein (HBc) consists of an N-terminal domain (NTD) and C-terminal domain (CTD) connected by a short linker peptide. Dynamic phosphorylation and dephosphorylation of HBc regulate its multiple functions in capsid assembly and viral replication. The cellular cyclin-dependent kinase 2 (CDK2) plays a major role in HBc phosphorylation and furthermore, is incorporated into the viral capsid, accounting for most of the “endogenous kinase” activity associated with the capsid. The packaged CDK2 is thought to play a role in phosphorylating HBc to trigger nucleocapsid disassembly (uncoating), an essential step during viral infection. However, little is currently known on how CDK2 is recruited and packaged into the capsid. We have now identified three RXL motifs, in the HBc NTD, known as cyclin docking motifs (CDMs), which mediates the interactions of various CDK substrates/regulators with CDK/cyclin complexes. Mutations of the CDMs in the HBc NTD reduced CTD phosphorylation and diminished CDK2 packaging into the capsid. Also, the CDM mutations showed little effects on capsid assembly and pregenomic RNA (pgRNA) packaging but impaired the integrity of mature nucleocapsids. Furthermore, the CDM mutations blocked covalently closed circular DNA (CCC DNA) formation during infection while having no effect on or enhancing CCC DNA formation via intracellular amplification. These results indicate that the HBc NTD CDMs play a role in CDK2 recruitment and packaging, which, in turn, is important for productive infection. Author Summary Hepatitis B virus (HBV) is an important global human pathogen and persistently infects hundreds of millions of people, who are at high risk of cirrhosis and liver cancer. HBV capsid packages a host cell protein kinase, the cyclin-dependent kinase 2 (CDK2), which is thought to be required to trigger disassembly of the viral nucleocapsid during infection by phosphorylating the capsid protein, a prerequisite for successful infection. We have identified docking sites on the capsid protein for recruiting CDK2, in complex with its cyclin partner, to facilitate capsid protein phosphorylation and CDK2 packaging. Mutations of these docking sites reduced capsid protein phosphorylation, impaired CDK2 packaging into HBV capsids, and blocked HBV infection. These results provide novel insights regarding CDK2 packaging into HBV capsids and the role of CDK2 in HBV infection and should facilitate the development of antiviral drugs that target the HBV capsid protein.


2017 ◽  
Vol 174 (14) ◽  
pp. 2261-2272 ◽  
Author(s):  
Yiping Li ◽  
Zhengwen Liu ◽  
Lingyun Hui ◽  
Xi Liu ◽  
Ai Feng ◽  
...  

2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Xiaojun Ning ◽  
Laurie Luckenbaugh ◽  
Kuancheng Liu ◽  
Volker Bruss ◽  
Camille Sureau ◽  
...  

ABSTRACTDuring the morphogenesis of hepatitis B virus (HBV), an enveloped virus, two types of virions are secreted: (i) a minor population of complete virions containing a mature nucleocapsid with the characteristic, partially double-stranded, relaxed circular DNA genome and (ii) a major population containing an empty capsid with no DNA or RNA (empty virions). Secretion of both types of virions requires interactions between the HBV capsid or core protein (HBc) and the viral surface or envelope proteins. We have studied the requirements from both HBc and envelope proteins for empty virion secretion in comparison with those for secretion of complete virions. Substitutions within the N-terminal domain of HBc that block secretion of DNA-containing virions reduced but did not prevent secretion of empty virions. The HBc C-terminal domain was not essential for empty virion secretion. Among the three viral envelope proteins, the smallest, S, alone was sufficient for empty virion secretion at a basal level. The largest protein, L, essential for complete virion secretion, was not required but could stimulate empty virion secretion. Also, substitutions in L that eliminated secretion of complete virions reduced but did not eliminate empty virion secretion. S mutations that blocked secretion of the hepatitis D virus (HDV), an HBV satellite, did not block secretion of either empty or complete HBV virions. Together, these results indicate that both common and distinct signals on empty capsids and mature nucleocapsids interact with the S and L proteins during the formation of complete and empty virions.IMPORTANCEHepatitis B virus (HBV) is a major cause of severe liver diseases, including cirrhosis and cancer. In addition to the complete infectious virion particle, which contains an outer envelope layer and an interior capsid that, in turn, encloses a DNA genome, HBV-infected cells also secrete noninfectious, incomplete viral particles in large excess over the number of complete virions. In particular, the empty (or genome-free) virion shares with the complete virion the outer envelope and interior capsid but contains no genome. We have carried out a comparative study on the capsid and envelope requirements for the secretion of these two types of virion particles and uncovered both shared and distinct determinants on the capsid and envelope for their secretion. These results provide new information on HBV morphogenesis and have implications for efforts to develop empty HBV virions as novel biomarkers and a new generation of HBV vaccine.


2008 ◽  
Vol 416 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Hang Kang ◽  
Jaehoon Yu ◽  
Guhung Jung

The HBV (hepatitis B virus) core is a phosphoprotein whose assembly, replication, encapsidation and localization are regulated by phosphorylation. It is known that PKC (protein kinase C) regulates pgRNA (pregenomic RNA) encapsidation by phosphorylation of the C-terminus of core, which is a component packaged into capsid. Neither the N-terminal residue phosphorylated by PKC nor the role of the C-terminal phosphorylation have been cleary defined. In the present study we found that HBV Cp149 (core protein C-terminally truncated at amino acid 149) expressed in Escherichia coli was phosphorylated by PKC at Ser106. PKC-mediated phosphorylation increased core affinity, as well as assembly and capsid stability. In vitro phosphorylation with core mutants (S26A, T70A, S106A and T114A) revealed that the Ser106 mutation inhibited phosphorylation of core by PKC. CD analysis also revealed that PKC-mediated phosphorylation stabilized the secondary structure of capsid. When either pCMV/FLAG-Cp149[WT (wild-type)] or pCMV/FLAG-S106A Cp149 was transfected into Huh7 human hepatoma cells, mutant capsid level was decreased by 2.06-fold with the S106A mutant when compared with WT, although the same level of total protein was expressed in both cases. In addition, when pUC1.2x and pUC1.2x/S106A were transfected, mutant virus titre was decreased 2.31-fold compared with WT virus titre. In conclusion, PKC-mediated phosphorylation increased capsid assembly, stability and structural stability.


2020 ◽  
Vol 432 (13) ◽  
pp. 3802-3819 ◽  
Author(s):  
Virgile Rat ◽  
Xavier Pinson ◽  
Florian Seigneuret ◽  
Stéphanie Durand ◽  
Charline Herrscher ◽  
...  

2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Jan Martin Berke ◽  
Pascale Dehertogh ◽  
Karen Vergauwen ◽  
Wendy Mostmans ◽  
Koen Vandyck ◽  
...  

ABSTRACT Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro. Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro. JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.


Sign in / Sign up

Export Citation Format

Share Document