scholarly journals The Hepatitis E Virus Capsid C-Terminal Region Is Essential for the Viral Life Cycle: Implication for Viral Genome Encapsidation and Particle Stabilization

2013 ◽  
Vol 87 (10) ◽  
pp. 6031-6036 ◽  
Author(s):  
T. Shiota ◽  
T.-C. Li ◽  
S. Yoshizaki ◽  
T. Kato ◽  
T. Wakita ◽  
...  
2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Dagmara Szkolnicka ◽  
Angela Pollán ◽  
Nathalie Da Silva ◽  
Noémie Oechslin ◽  
Jérôme Gouttenoire ◽  
...  

ABSTRACT Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis and jaundice in the world. Current understanding of the molecular virology and pathogenesis of hepatitis E is incomplete, due particularly to the limited availability of functional tools. Here, we report the development of tagged HEV genomes as a novel tool to investigate the viral life cycle. A selectable subgenomic HEV replicon was subjected to random 15-nucleotide sequence insertion using transposon-based technology. Viable insertions in the open reading frame 1 (ORF1) protein were selected in a hepatoblastoma cell line. Functional insertion sites were identified downstream of the methyltransferase domain, in the hypervariable region (HVR), and between the helicase and RNA-dependent RNA polymerase domains. HEV genomes harboring a hemagglutinin (HA) epitope tag or a small luciferase (NanoLuc) in the HVR were found to be fully functional and to allow the production of infectious virus. NanoLuc allowed quantitative monitoring of HEV infection and replication by luciferase assay. The use of HA-tagged replicons and full-length genomes allowed localization of putative sites of HEV RNA replication by the simultaneous detection of viral RNA by fluorescence in situ hybridization and of ORF1 protein by immunofluorescence. Candidate HEV replication complexes were found in cytoplasmic dot-like structures which partially overlapped ORF2 and ORF3 proteins as well as exosomal markers. Hence, tagged HEV genomes yield new insights into the viral life cycle and should allow further investigation of the structure and composition of the viral replication complex. IMPORTANCE Hepatitis E virus (HEV) infection is an important cause of acute hepatitis and may lead to chronic infection in immunocompromised patients. Knowledge of the viral life cycle is incomplete due to the limited availability of functional tools. In particular, low levels of expression of the ORF1 protein or limited sensitivity of currently available antibodies or both limit our understanding of the viral replicase. Here, we report the successful establishment of subgenomic HEV replicons and full-length genomes harboring an epitope tag or a functional reporter in the ORF1 protein. These novel tools should allow further characterization of the HEV replication complex and to improve our understanding of the viral life cycle.


2018 ◽  
Vol 7 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kiyoshi Himmelsbach ◽  
Daniela Bender ◽  
Eberhard Hildt

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Takashi Nishiyama ◽  
Koji Umezawa ◽  
Kentaro Yamada ◽  
Masaharu Takahashi ◽  
Satoshi Kunita ◽  
...  

The hepatitis E virus (HEV) is a causative agent of hepatitis E. HEV virions in circulating blood and culture media are quasi-enveloped, while those in feces are nonenveloped. The capsid (ORF2) protein associated with an enveloped HEV virion is reported to comprise the translation product of leucine 14/methionine 16 to 660 (C-terminal end). However, the nature of the ORF2 protein associated with fecal HEV remains unclear. In the present study, we compared the molecular size of the ORF2 protein among fecal HEV, cell-culture-generated HEV (HEVcc), and detergent-treated protease-digested HEVcc. The ORF2 proteins associated with fecal HEV were C-terminally truncated and showed the same size as those of the detergent-treated protease-digested HEVcc virions (60 kDa), in contrast to those of the HEVcc (68 kDa). The structure prediction of the ORF2 protein (in line with previous studies) demonstrated that the C-terminal region (54 amino acids) of an ORF2 protein is in flux, suggesting that proteases target this region. The nonenveloped nondigested HEV structure prediction indicates that the C-terminal region of the ORF2 protein moves to the surface of the virion and is unnecessary for HEV infection. Our findings clarify the maturation of nonenveloped HEV and will be useful for studies on the HEV lifecycle.


Vaccine ◽  
2001 ◽  
Vol 20 (5-6) ◽  
pp. 853-857 ◽  
Author(s):  
Mingdong Zhang ◽  
Suzanne U Emerson ◽  
Hanh Nguyen ◽  
Ronald E Engle ◽  
Sugantha Govindarajan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document