scholarly journals Identification of Nonessential Regions of the nsp2 Replicase Protein of Porcine Reproductive and Respiratory Syndrome Virus Strain VR-2332 for Replication in Cell Culture

2007 ◽  
Vol 81 (18) ◽  
pp. 9878-9890 ◽  
Author(s):  
Jun Han ◽  
Gongping Liu ◽  
Yue Wang ◽  
Kay S. Faaberg

ABSTRACT The nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is a multidomain protein and has been shown to undergo remarkable genetic variation, primarily in its middle region, while exhibiting high conservation in the N-terminal putative protease domain and the C-terminal predicted transmembrane region. A reverse genetics system of PRRSV North American prototype VR-2332 was developed to explore the importance of different regions of nsp2 for viral replication. A series of mutants with in-frame deletions in the nsp2 coding region were engineered, and infectious viruses were subsequently recovered from transfected cells and further characterized. The results demonstrated that the cysteine protease domain (PL2), the PL2 downstream flanking sequence (amino acids [aa] 181 to 323), and the putative transmembrane domain were critical for replication. In contrast, the segment of nsp2 preceding the PL2 domain (aa 13 to 35) was dispensable for viral replication, and the nsp2 middle hypervariable region (aa 324 to 813) tolerated 100-aa or 200-aa deletions but could not be removed as a whole; the largest deletion was about 400 aa (nsp2Δ324-726). Characterization of the mutants demonstrated that those with small deletions possessed growth kinetics and RNA expression profiles similar to those of the parental virus, while the nsp2Δ324-726 mutant displayed decreased cytolytic activity on MARC-145 cells and did not develop visible plaques. Finally, the utilization of the genetic flexibility of nsp2 to express foreign genes was examined by inserting the gene encoding green fluorescent protein (GFP) in frame into one nsp2 deletion mutant construct. The recombinant virus was viable but impaired and unstable and gradually gained parental growth kinetics by the loss of most of the GFP gene.

2009 ◽  
Vol 83 (18) ◽  
pp. 9449-9463 ◽  
Author(s):  
Jun Han ◽  
Mark S. Rutherford ◽  
Kay S. Faaberg

ABSTRACT The N terminus of the replicase nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a putative cysteine protease domain (PL2). Previously, we demonstrated that deletion of either the PL2 core domain (amino acids [aa] 47 to 180) or the immediate downstream region (aa 181 to 323) is lethal to the virus. In this study, the PL2 domain was found to encode an active enzyme that mediates efficient processing of nsp2-3 in CHO cells. The PL2 protease possessed both trans- and cis-cleavage activities, which were distinguished by individual point mutations in the protease domain. The minimal size required to maintain these two enzymatic activities included nsp2 aa 47 to 240 (Tyr47 to Cys240) and aa 47 to 323 (Tyr47 to Leu323), respectively. Introduction of targeted amino acid mutations in the protease domain confirmed the importance of the putative Cys55- His124 catalytic motif for nsp2/3 proteolysis in vitro, as were three additional conserved cysteine residues (Cys111, Cys142, and Cys147). The conserved aspartic acids (e.g., Asp89) were essential for the PL2 protease trans-cleavage activity. Reverse genetics revealed that the PL2 trans-cleavage activity played an important role in the PRRSV replication cycle in that mutations that impaired the PL2 protease trans function, but not the cis activity, were detrimental to viral viability. Lastly, the potential nsp2/3 cleavage site was probed. Mutations with the largest impact on in vitro cleavage were at or near the G1196|G1197 dipeptide.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Benjamin Brennan ◽  
Veronica V. Rezelj ◽  
Richard M. Elliott

ABSTRACT SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3′ rapid amplification of cDNA ends (RACE), we mapped the 3′ end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3′ end of the N mRNA terminates upstream of a 5′-GCCAGCC-3′ motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5′-GCCAGCC-3′ motif present in the virus genomic S RNA.


2010 ◽  
Vol 84 (21) ◽  
pp. 11575-11579 ◽  
Author(s):  
Monique H. Verheije ◽  
Marne C. Hagemeijer ◽  
Mustafa Ulasli ◽  
Fulvio Reggiori ◽  
Peter J. M. Rottier ◽  
...  

ABSTRACT The coronavirus nucleocapsid (N) protein is a virion structural protein. It also functions, however, in an unknown way in viral replication and localizes to the viral replication-transcription complexes (RTCs). Here we investigated, using recombinant murine coronaviruses expressing green fluorescent protein (GFP)-tagged versions of the N protein, the dynamics of its interactions with the RTCs and the domain(s) involved. Using fluorescent recovery after photobleaching, we showed that the N protein, unlike the nonstructural protein 2, is dynamically associated with the RTCs. Recruitment of the N protein to the RTCs requires the C-terminal N2b domain, which interacts with other N proteins in an RNA-independent manner.


2004 ◽  
Vol 78 (19) ◽  
pp. 10793-10802 ◽  
Author(s):  
Xiaohong Shi ◽  
David F. Lappin ◽  
Richard M. Elliott

ABSTRACT The membrane glycoproteins (Gn and Gc) of Bunyamwera virus (BUN; family Bunyaviridae) accumulate in the Golgi complex, where virion maturation occurs. The Golgi targeting and retention signal has previously been shown to reside within the Gn protein. A series of truncated Gn and glycoprotein precursor cDNAs were constructed by progressively deleting the coding region of the transmembrane domain (TMD) and the cytoplasmic tail. We also constructed chimeric proteins of BUN Gc, enhanced green fluorescent protein (EGFP), and human respiratory syncytial virus (HRSV) fusion (F) protein that contain the Gn TMD with various lengths of its adjacent cytoplasmic tails. The subcellular localization of mutated BUN glycoproteins and chimeric proteins was investigated by double-staining immunofluorescence with antibodies against BUN glycoproteins or the HRSV F protein and with antibodies specific for the Golgi complex. The results revealed that Gn and all truncated Gn proteins that contained the intact TMD (residues 206 to 224) were able to translocate to the Golgi complex and also rescued the Gc protein, which is retained in the endoplasmic reticulum when expressed alone, to this organelle. The rescued Gc proteins acquired endo-β-N-acetylglucosaminidase H resistance. The Gn TMD could also target chimeric EGFP to the Golgi and retain the F protein, which is characteristically expressed on the surface of HRSV-infected cells, in the Golgi. However, chimeric BUN Gc did not translocate to the Golgi, suggesting that an interaction with Gn is involved in Golgi retention of the Gc protein. Collectively, these data demonstrate that the Golgi targeting and retention signal of BUN glycoproteins resides in the TMD of the Gn protein.


2006 ◽  
Vol 80 (16) ◽  
pp. 8089-8099 ◽  
Author(s):  
Xiaohong Shi ◽  
Alain Kohl ◽  
Vincent H. J. Léonard ◽  
Ping Li ◽  
Angela McLees ◽  
...  

ABSTRACT The nonstructural protein NSm of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family, is encoded by the M segment in a polyprotein precursor, along with the virion glycoproteins, in the order Gn-NSm-Gc. As little is known of its function, we examined the intracellular localization, membrane integrality, and topology of NSm and its role in virus replication. We confirmed that NSm is an integral membrane protein and that it localizes in the Golgi complex, together with Gn and Gc. Coimmunoprecipitation assays and yeast two-hybrid analysis demonstrated that NSm was able to interact with other viral proteins. NSm is predicted to contain three hydrophobic (I, III, and V) and two nonhydrophobic (II and IV) domains. The N-terminal nonhydrophobic domain II was found in the lumen of an intracellular compartment. A novel BUNV assembly assay was developed to monitor the formation of infectious virus-like-particles (VLPs). Using this assay, we showed that deletions of either the complete NSm coding region or domains I, II, and V individually seriously compromised VLP production. Consistently, we were unable to rescue viable viruses by reverse genetics from cDNA constructs that contained the same deletions. However, we could generate mutant BUNV with deletions in NSm domains III and IV and also a recombinant virus with the green fluorescent protein open reading frame inserted into NSm domain IV. The mutant viruses displayed differences in their growth properties. Overall, our data showed that the N-terminal region of NSm, which includes domain I and part of domain II, is required for virus assembly and that the C-terminal hydrophobic domain V may function as an internal signal sequence for the Gc glycoprotein.


2006 ◽  
Vol 81 (5) ◽  
pp. 2128-2137 ◽  
Author(s):  
F. Arnoldi ◽  
M. Campagna ◽  
C. Eichwald ◽  
U. Desselberger ◽  
O. R. Burrone

ABSTRACT Rotavirus morphogenesis starts in intracellular inclusion bodies called viroplasms. RNA replication and packaging are mediated by several viral proteins, of which VP1, the RNA-dependent RNA polymerase, and VP2, the core scaffolding protein, were shown to be sufficient to provide replicase activity in vitro. In vivo, however, viral replication complexes also contain the nonstructural proteins NSP2 and NSP5, which were shown to be essential for replication, to interact with each other, and to form viroplasm-like structures (VLS) when coexpressed in uninfected cells. In order to gain a better understanding of the intermediates formed during viral replication, this work focused on the interactions of NSP5 with VP1, VP2, and NSP2. We demonstrated a strong interaction of VP1 with NSP5 but only a weak one with NSP2 in cotransfected cells in the absence of other viral proteins or viral RNA. By contrast, we failed to coimmunoprecipitate VP2 with anti-NSP5 antibodies or NSP5 with anti-VP2 antibodies. We constructed a tagged form of VP1, which was found to colocalize in viroplasms and in VLS formed by NSP5 and NSP2. The tagged VP1 was able to replace VP1 structurally by being incorporated into progeny viral particles. When applying anti-tag-VP1 or anti-NSP5 antibodies, coimmunoprecipitation of tagged VP1 with NSP5 was found. Using deletion mutants of NSP5 or different fragments of NSP5 fused to enhanced green fluorescent protein, we identified the 48 C-terminal amino acids as the region essential for interaction with VP1.


2011 ◽  
Vol 160 (1-2) ◽  
pp. 221-229 ◽  
Author(s):  
Youhua Huang ◽  
Xiaohong Huang ◽  
Jia Cai ◽  
Fuzhou Ye ◽  
Liya Guan ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


Sign in / Sign up

Export Citation Format

Share Document