scholarly journals Impact of 2-Bromo-5,6-Dichloro-1-β-d-Ribofuranosyl Benzimidazole Riboside and Inhibitors of DNA, RNA, and Protein Synthesis on Human Cytomegalovirus Genome Maturation

2005 ◽  
Vol 79 (17) ◽  
pp. 11115-11127 ◽  
Author(s):  
Michael A. McVoy ◽  
Daniel E. Nixon

ABSTRACT Herpesvirus genome maturation is a complex process in which concatemeric DNA molecules are translocated into capsids and cleaved at specific sequences to produce encapsidated-unit genomes. Bacteriophage studies further suggest that important ancillary processes, such as RNA transcription and DNA synthesis, concerned with repeat duplication, recombination, branch resolution, or damage repair may also be involved with the genome maturation process. To gain insight into the biochemical activities needed for herpesvirus genome maturation, 2-bromo-5,6-dichloro-1-β-d-ribofuranosyl benzimidazole riboside (BDCRB) was used to allow the accumulation of human cytomegalovirus concatemeric DNA while the formation of new genomes was being blocked. Genome formation was restored upon BDCRB removal, and addition of various inhibitors during this time window permitted evaluation of their effects on genome maturation. Inhibitors of protein synthesis, RNA transcription, and the viral DNA polymerase only modestly reduced genome formation, demonstrating that these activities are not required for genome maturation. In contrast, drugs that inhibit both viral and host DNA polymerases potently blocked genome formation. Radioisotope incorporation in the presence of a viral DNA polymerase inhibitor further suggested that significant host-mediated DNA synthesis occurs throughout the viral genome. These results indicate a role for host DNA polymerases in genome maturation and are consistent with a need for terminal repeat duplication, debranching, or damage repair concomitant with DNA packaging or cleavage. Similarities to previously reported effects of BDCRB on guinea pig cytomegalovirus were also noted; however, BDCRB induced low-level formation of a supergenomic species called monomer+ DNA that is unique to human cytomegalovirus. Analysis of monomer+ DNA suggested a model for its formation in which BDCRB permits limited packaging of concatemeric DNA but induces skipping of cleavage sites.

2012 ◽  
Vol 86 (18) ◽  
pp. 9817-9827 ◽  
Author(s):  
Alexandra Nitzsche ◽  
Charlotte Steinhäußer ◽  
Katrin Mücke ◽  
Christina Paulus ◽  
Michael Nevels

In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using “click chemistry” revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.


2009 ◽  
Vol 84 (6) ◽  
pp. 3079-3093 ◽  
Author(s):  
Karen Tran ◽  
Jeffrey A. Mahr ◽  
Deborah H. Spector

ABSTRACT We have continued studies to further understand the role of the ubiquitin-proteasome system (UPS) in human cytomegalovirus (HCMV) infection. With specific inhibitors of the proteasome, we show that ongoing proteasome activity is necessary for facilitating the various stages of the infection. Immediate-early protein 2 expression is modestly reduced with addition of proteasome inhibitors at the onset of infection; however, both early and late gene expression are significantly delayed, even if the inhibitor is removed at 12 h postinfection. Adding the inhibitor at later times during the infection blocks the further accumulation of viral early and late gene products, the severity of which is dependent on when the proteasome is inhibited. This can be attributed primarily to a block in viral RNA transcription, although DNA synthesis is also partially inhibited. Proteasome activity and expression increase as the infection progresses, and this coincides with the relocalization of active proteasomes to the periphery of the viral DNA replication center, where there is active RNA transcription. Interestingly, one 19S subunit, Rpn2, is specifically recruited into the viral DNA replication center. The relocalization of the subunits requires viral DNA replication, but their maintenance around or within the replication center is not dependent on continued viral DNA synthesis or the proteolytic activity of the proteasome. These studies highlight the importance of the UPS at all stages of the HCMV infection and support further studies into this pathway as a potential antiviral target.


1997 ◽  
Vol 41 (12) ◽  
pp. 2680-2685 ◽  
Author(s):  
D J Tenney ◽  
G Yamanaka ◽  
S M Voss ◽  
C W Cianci ◽  
A V Tuomari ◽  
...  

Lobucavir (LBV) is a deoxyguanine nucleoside analog with broad-spectrum antiviral activity. LBV was previously shown to inhibit herpes simplex virus (HSV) DNA polymerase after phosphorylation by the HSV thymidine kinase. Here we determined the mechanism of action of LBV against human cytomegalovirus (HCMV). LBV inhibited HCMV DNA synthesis to a degree comparable to that of ganciclovir (GCV), a drug known to target the viral DNA polymerase. The expression of late proteins and RNA, dependent on viral DNA synthesis, was also inhibited by LBV. Immediate-early and early HCMV gene expression was unaffected, suggesting that LBV acts temporally coincident with HCMV DNA synthesis and not through cytotoxicity. In vitro, the triphosphate of LBV was a potent inhibitor of HCMV DNA polymerase with a Ki of 5 nM. LBV was phosphorylated to its triphosphate form intracellularly in both infected and uninfected cells, with phosphorylated metabolite levels two- to threefold higher in infected cells. GCV-resistant HCMV isolates, with deficient GCV phosphorylation due to mutations in the UL97 protein kinase, remained sensitive to LBV. Overall, these results suggest that LBV-triphosphate halts HCMV DNA replication by inhibiting the viral DNA polymerase and that LBV phosphorylation can occur in the absence of viral factors including the UL97 protein kinase. Furthermore, LBV may be effective in the treatment of GCV-resistant HCMV.


2009 ◽  
Vol 84 (4) ◽  
pp. 1771-1784 ◽  
Author(s):  
Blair L. Strang ◽  
Steeve Boulant ◽  
Donald M. Coen

ABSTRACT In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.


mBio ◽  
2012 ◽  
Vol 3 (1) ◽  
Author(s):  
Blair L. Strang ◽  
Steeve Boulant ◽  
Tomas Kirchhausen ◽  
Donald M. Coen

ABSTRACTDrastic reorganization of the nucleus is a hallmark of herpesvirus replication. This reorganization includes the formation of viral replication compartments, the subnuclear structures in which the viral DNA genome is replicated. The architecture of replication compartments is poorly understood. However, recent work with human cytomegalovirus (HCMV) showed that the viral DNA polymerase subunit UL44 concentrates and viral DNA synthesis occurs at the periphery of these compartments. Any cellular factors involved in replication compartment architecture are largely unknown. Previously, we found that nucleolin, a major protein component of nucleoli, associates with HCMV UL44 in infected cells and is required for efficient viral DNA synthesis. Here, we show that nucleolin binds to purified UL44. Confocal immunofluorescence analysis demonstrated colocalization of nucleolin with UL44 at the periphery of replication compartments. Pharmacological inhibition of viral DNA synthesis prevented the formation of replication compartments but did not abrogate association of UL44 and nucleolin. Thus, association of UL44 and nucleolin is unlikely to be a nonspecific effect related to development of replication compartments. No detectable colocalization of 5-ethynyl-2′-deoxyuridine (EdU)-labeled viral DNA with nucleolin was observed, suggesting that nucleolin is not directly involved in viral DNA synthesis. Small interfering RNA (siRNA)-mediated knockdown of nucleolin caused improper localization of UL44 and a defect in EdU incorporation into viral DNA. We propose a model in which nucleolin anchors UL44 at the periphery of replication compartments to maintain their architecture and promote viral DNA synthesis.IMPORTANCEHuman cytomegalovirus (HCMV) is an important human pathogen. HCMV infection causes considerable rearrangement of the structure of the nucleus, largely due to the formation of viral replication compartments within the nucleus. Within these compartments, the virus replicates its DNA genome. We previously demonstrated that nucleolin is required for efficient viral DNA synthesis and now find that the nucleolar protein nucleolin interacts with a subunit of the viral DNA polymerase, UL44, specifically at the periphery of replication compartments. Moreover, we find that nucleolin is required to properly localize UL44 at this region. Nucleolin is, therefore, involved in the organization of proteins within replication compartments. This, to our knowledge, is the first report identifying a cellular protein required for maintaining replication compartment architecture.


1997 ◽  
Vol 41 (3) ◽  
pp. 594-599 ◽  
Author(s):  
X Xiong ◽  
J L Smith ◽  
M S Chen

Cidofovir (CDV) (HPMPC) has potent in vitro and in vivo activity against human cytomegalovirus (HCMV), CDV diphosphate (CDVpp), the putative antiviral metabolite of CDV, is an inhibitor and an alternate substrate of HCMV DNA polymerase. CDV is incorporated with the correct complementation to dGMP in the template, and the incorporated CDV at the primer end is not excised by the 3'-to-5' exonuclease activity of HCMV DNA polymerase. The incorporation of a CDV molecule causes a decrease in the rate of DNA elongation for the addition of the second natural nucleotide from the singly incorporated CDV molecule. The reduction in the rate of DNA (36-mer) synthesis from an 18-mer by one incorporated CDV is 31% that of the control. However, the fidelity of HCMV DNA polymerase is maintained for the addition of the nucleotides following a single incorporated CDV molecule. The rate of DNA synthesis by HCMV DNA polymerase is drastically decreased after the incorporation of two consecutive CDV molecules; the incorporation of a third consecutive CDV molecule is not detectable. Incorporation of two CDV molecules separated by either one or two deoxynucleoside monophosphates (dAMP, dGMP, or dTMP) also drastically decreases the rate of DNA chain elongation by HCMV DNA polymerase. The rate of DNA synthesis decreases by 90% when a template which contains one internally incorporated CDV molecule is used. The inhibition by CDVpp of DNA synthesis by HCMV DNA polymerase and the inability of HCMV DNA polymerase to excise incorporated CDV from DNA may account for the potent and long-lasting anti-CMV activity of CDV.


1991 ◽  
Vol 11 (9) ◽  
pp. 4786-4795
Author(s):  
J S Gibbs ◽  
K Weisshart ◽  
P Digard ◽  
A deBruynKops ◽  
D M Knipe ◽  
...  

Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.


2014 ◽  
Vol 95 (4) ◽  
pp. 940-947 ◽  
Author(s):  
Shariya L. Terrell ◽  
Jean M. Pesola ◽  
Donald M. Coen

The catalytic subunit of the herpes simplex virus 1 DNA polymerase (HSV-1 Pol) is essential for viral DNA synthesis and production of infectious virus in cell culture. While mutations that affect 5′–3′ polymerase activity have been evaluated in animal models of HSV-1 infection, mutations that affect other functions of HSV-1 Pol have not. In a previous report, we utilized bacterial artificial chromosome technology to generate defined HSV-1 pol mutants with lesions in the previously uncharacterized pre-NH2-terminal domain. We found that the extreme N-terminal 42 residues (deletion mutant polΔN43) were dispensable for replication in cell culture, while residues 44–49 (alanine-substitution mutant polA6) were required for efficient viral DNA synthesis and production of infectious virus. In this study, we sought to address the importance of these conserved elements in viral replication in a mouse corneal infection model. Mutant virus polΔN43 exhibited no meaningful defect in acute or latent infection despite strong conservation of residues 1–42 with HSV-2 Pol. The polA6 mutation caused a modest defect in replication at the site of inoculation, and was severely impaired for ganglionic replication, even at high inocula that permitted efficient corneal replication. Additionally, the polA6 mutation resulted in reduced latency establishment and subsequent reactivation. Moreover, we found that the polA6 replication defect in cultured cells was exacerbated in resting cells as compared to dividing cells. These results reveal an important role for the conserved motif at residues 44–49 of HSV-1 Pol for ganglionic viral replication.


Sign in / Sign up

Export Citation Format

Share Document