scholarly journals Serial Passage through Human Glioma Xenografts Selects for a Δγ134.5 Herpes Simplex Virus Type 1 Mutant That Exhibits Decreased Neurotoxicity and Prolongs Survival of Mice with Experimental Brain Tumors

2006 ◽  
Vol 80 (15) ◽  
pp. 7308-7315 ◽  
Author(s):  
Amish C. Shah ◽  
Kathleen H. Price ◽  
Jacqueline N. Parker ◽  
Sharon L. Samuel ◽  
Sreelatha Meleth ◽  
...  

ABSTRACT Previous studies have described in vitro serial passage of a Δγ134.5 herpes simplex virus type 1 (HSV-1) strain in SK-N-SH neuroblastoma cells and selection of mutants that have acquired the ability to infect and replicate in this previously nonpermissive cell line. Here we describe the selection of a mutant HSV-1 strain by in vivo serial passage, which prolongs survival in two separate experimental murine brain tumor models. Two conditionally replication-competent Δγ134.5 viruses, M002, which expresses murine interleukin-12, and its parent virus, R3659, were serially passaged within human malignant glioma D54-MG cell lines in vitro or flank tumor xenografts in vivo. The major findings are (i) viruses passaged in vivo demonstrate decreased neurovirulence, whereas those passaged in vitro demonstrate a partial recovery of the neurovirulence associated with HSV-1; and (ii) vvD54-M002, the virus selected after in vivo serial passage of M002 in D54-MG tumors, improves survival in two independent murine brain tumor models compared to the parent (unpassaged) M002. Additionally, in vitro-passaged, but not in vivo-passaged, M002 displayed changes in the protein synthesis profile in previously nonpermissive cell lines, as well as early US11 transcription. Thus, a mutant HSV-1 strain expressing a foreign gene can be selected for enhanced antitumor efficacy via in vivo serial passage within flank D54-MG tumor xenografts. The enhanced antitumor efficacy of vvD54-M002 is not due to restoration of protein synthesis or early US11 expression. This finding emphasizes the contribution of the in vivo tumor environment for selecting novel oncolytic HSV specifically adapted for tumor cell destruction in vivo.

2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


1995 ◽  
Vol 39 (4) ◽  
pp. 846-849 ◽  
Author(s):  
H Aoki ◽  
T Akaike ◽  
K Abe ◽  
M Kuroda ◽  
S Arai ◽  
...  

Oryzacystatin (OC) is the first-described cystatin originating from rice seed; it consists of two molecular species, OC-I and OC-II, which have antiviral action against poliovirus in vitro (H. Kondo, S. Ijiri, K. Abe, H. Maeda, and S. Arai, FEBS Lett. 299:48-50, 1992). In the experiments reported here, we investigated the effects of OC-I and OC-II on the replication of herpes simplex virus type 1 (HSV-1) in vitro and in vivo. HSV-1 was inoculated onto monolayers of monkey kidney epithelial cells (CV-1 cells) at a multiplicity of infection of 0.1 PFU per cell. After adsorption of the virus onto cells, the cultures were incubated in the presence of either OC-I or OC-II in the concentration range of 1.0 to 300 microM, and the supernatant virus yield was quantitated at 24 h. The effective concentration for 90% inhibition of HSV-1 was 14.8 microM, while a cytotoxic effect on CV-1 cells without infection of HSV-1 was not observed below 500 microM OC-I. Therefore, the apparent in vitro chemotherapeutic index was estimated to be more than 33. In the mouse model of HSV-1-induced keratitis and encephalopathy, topical administration of OC-I to the mouse cornea produced a significant decrease in virus production in the cornea (mean virus yields: 3.11 log10 PFU in the treated group and 4.37 log10 PFU in the control group) and significant improvement in survival rates (P = 0.01). The in vivo antiherpetic effect of OC-I was comparable to that of acyclovir, indicating that topical treatment of HSV-1 infection in humans with OC-I might be possible. Our data also suggest the importance of some thiol proteinases, which may be derived from either the host's cells or HSV-1, during the replication process of HSV-1.


2002 ◽  
Vol 76 (22) ◽  
pp. 11541-11550 ◽  
Author(s):  
Bruno Sainz ◽  
William P. Halford

ABSTRACT In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shanshan Wan ◽  
Yiwen Zhou ◽  
Qiong Huang ◽  
Yanning Yang

Background. Disruptor of telomeric silencing 1-like (Dot1l) plays a vital role in biological processes as a well-known methyltransferase. However, its role in herpes simplex virus type 1- (HSV-1-) infected keratitis remains unclear. Methods. In vitro and in vivo models were assessed to investigate the role of Dot1l in HSV-1 induced keratitis. C57BL/6 mice corneas were infected with HSV-1 for different days, with or without Dot1l inhibitor, to demonstrate the regulation of Dot1l in herpes simplex keratitis (HSK). Human corneal epithelial (HCE) cells were cultured and infected with HSV-1 to identify the molecular mechanisms involved. Results. In this study, we found that Dot1l was positively related to HSK. Inhibition of Dot1l with EPZ004777 (EPZ) alleviated corneal injury, including oxidative stress and inflammation in vivo. Similarly, the inhibition of Dot1l with either EPZ or small interfering RNA (siRNA) showed an inhibitory effect on HSV-1-induced oxidative stress and inflammation in HCE cells. Moreover, our study revealed that the expression of p38 MAPK was elevated after HSV-1 infection in HCE cells, and the inhibition of Dot1l could reduce the increased expression of p38 MAPK induced by HSV-1 infection in vivo and in vitro. Conclusion. Our results demonstrated that the inhibition of Dot1l alleviated corneal oxidative stress and inflammation by inhibiting ROS production through the p38 MAPK pathway in HSK. These findings indicated that Dot1l might be a valuable therapeutic target for HSK.


1980 ◽  
Vol 30 (3) ◽  
pp. 678-685
Author(s):  
Tina C. Chow ◽  
G. D. Hsiung

We studied the interaction of a neurotropic herpesvirus, herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2), and a lymphotropic herpesvirus, guinea pig herpes-like virus (HLV), with guinea pig spleen cells. Both HSV-1 and HSV-2 and HLV can attach to and penetrate into B- or T-enriched cells. Less than 1.4% of the total B- or T-enriched cell populations were susceptible to infection by HLV and to some degree to HSV-1 or HSV-2 as determined by infectious center assays. After specific antiserum treatment, higher titers of intracellular virus were detected in HLV-infected cells than in HSV-1- or HSV-2-infected cells. Both B-enriched and T-enriched cells could support HLV replication, but not that of HSV-1 or HSV-2. The replication of HSV-1 was demonstrated in guinea pig spleen cells pretreated with lipopolysaccharide but not with phytohemagglutinin. Furthermore, when cells were separated into B- and T-enriched cells, the B- enriched cells prestimulated with lipopolysaccharide were susceptible to HSV-1 replication, whereas the T-enriched cells prestimulated with phytohemagglutinin were not. The differences observed in vitro in the interactions of these two herpesviruses with guinea pig spleen cell subpopulations may provide a basis for understanding the differences observed in vivo in the pathogenesis of these two viruses; i.e., HLV is capable of infecting and persisting in guinea pig lymphocytes, whereas HSV is not.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


2012 ◽  
Vol 86 (16) ◽  
pp. 8592-8601 ◽  
Author(s):  
Charlotte Mahiet ◽  
Ayla Ergani ◽  
Nicolas Huot ◽  
Nicolas Alende ◽  
Ahmed Azough ◽  
...  

Herpes simplex virus 1 (HSV-1) is a human pathogen that leads to recurrent facial-oral lesions. Its 152-kb genome is organized in two covalently linked segments, each composed of a unique sequence flanked by inverted repeats. Replication of the HSV-1 genome produces concatemeric molecules in which homologous recombination events occur between the inverted repeats. This mechanism leads to four genome isomers (termed P, IS, IL, and ILS) that differ in the relative orientations of their unique fragments. Molecular combing analysis was performed on DNA extracted from viral particles and BSR, Vero, COS-7, and Neuro-2a cells infected with either strain SC16 or KOS of HSV-1, as well as from tissues of experimentally infected mice. Using fluorescence hybridization, isomers were repeatedly detected and distinguished and were accompanied by a large proportion of noncanonical forms (40%). In both cell and viral-particle extracts, the distributions of the four isomers were statistically equivalent, except for strain KOS grown in Vero and Neuro-2a cells, in which P and IS isomers were significantly overrepresented. In infected cell extracts, concatemeric molecules as long as 10 genome equivalents were detected, among which, strikingly, the isomer distributions were equivalent, suggesting that any such imbalance may occur during encapsidation.In vivo, for strain KOS-infected trigeminal ganglia, an unbalanced distribution distinct from the onein vitrowas observed, along with a considerable proportion of noncanonical assortment.


2003 ◽  
Vol 77 (5) ◽  
pp. 3307-3311 ◽  
Author(s):  
Sarah M. Richart ◽  
Scott A. Simpson ◽  
Claude Krummenacher ◽  
J. Charles Whitbeck ◽  
Lewis I. Pizer ◽  
...  

ABSTRACT Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons.


1991 ◽  
Vol 65 (12) ◽  
pp. 6989-6993 ◽  
Author(s):  
M D Trousdale ◽  
I Steiner ◽  
J G Spivack ◽  
S L Deshmane ◽  
S M Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document