scholarly journals Cytokine/Chemokine Responses in Activated CD4+ and CD8+ T Cells Isolated from Peripheral Blood, Bone Marrow, and Axillary Lymph Nodes during Acute Simian Immunodeficiency Virus Infection

2014 ◽  
Vol 88 (16) ◽  
pp. 9442-9457 ◽  
Author(s):  
C. S. Kenway-Lynch ◽  
A. Das ◽  
A. A. Lackner ◽  
B. Pahar
2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.


2008 ◽  
Vol 180 (8) ◽  
pp. 5530-5536 ◽  
Author(s):  
Shulin Qin ◽  
Yongjun Sui ◽  
Adam C. Soloff ◽  
Beth A. Fallert Junecko ◽  
Denise E. Kirschner ◽  
...  

2002 ◽  
Vol 76 (2) ◽  
pp. 688-696 ◽  
Author(s):  
Christiane Stahl-Hennig ◽  
Ralph M. Steinman ◽  
Peter Ten Haaft ◽  
Klaus Überla ◽  
Nicole Stolte ◽  
...  

ABSTRACT Deletion of the nef gene from simian immunodeficiency virus (SIV) strain SIVmac239 yields a virus that undergoes attenuated growth in rhesus macaques and offers substantial protection against a subsequent challenge with some SIV wild-type viruses. We used a recently described model to identify sites in which the SIVΔnef vaccine strain replicates and elicits immunity in vivo. A high dose of SIVΔnef was applied to the palatine and lingual tonsils, where it replicated vigorously in this portal of entry at 7 days. Within 2 weeks, the virus had spread and was replicating actively in axillary lymph nodes, primarily in extrafollicular T-cell-rich regions but also in germinal centers. At this time, large numbers of perforin-positive cells, both CD8+ T cells and CD3-negative presumptive natural killer cells, were found in the tonsil and axillary lymph nodes. The number of infected cells and perforin-positive cells then fell. When autopsy studies were carried out at 26 weeks, only 1 to 3 cells hybridized for viral RNA per section of lymphoid tissue. Nevertheless, infected cells were detected chronically in most lymphoid organs, where the titers of infectious virus could exceed by a log or more the titers in blood. Immunocytochemical labeling at the early active stages of infection showed that cells expressing SIVΔnef RNA were CD4+ T lymphocytes. A majority of infected cells were not in the active cell cycle, since 60 to 70% of the RNA-positive cells in tissue sections lacked the Ki-67 cell cycle antigen, and both Ki-67-positive and -negative cells had similar grain counts for viral RNA. Macrophages and dendritic cells, identified with a panel of monoclonal antibodies to these cells, were rarely infected. We conclude that the attenuated growth and protection observed with the SIVΔnef vaccine strain does not require that the virus shift its characteristic site of replication, the CD4+ T lymphocyte. In fact, this immunodeficiency virus can replicate actively in CD4+ T cells prior to being contained by the host, at least in part by a strong killer cell response that is generated acutely in the infected lymph nodes.


2003 ◽  
Vol 19 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Emmanuel Khatissian ◽  
Valérie Monceaux ◽  
Marie-Christine Cumont ◽  
Raphaël Ho Tsong Fang ◽  
Jérôme Estaquier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document