scholarly journals Evidence for a Multiprotein Gamma-2 Herpesvirus Entry Complex

2007 ◽  
Vol 81 (23) ◽  
pp. 13082-13091 ◽  
Author(s):  
Laurent Gillet ◽  
Philip G. Stevenson

ABSTRACT Herpesviruses use multiple virion glycoproteins to enter cells. How these work together is not well understood: some may act separately or they may form a single complex. Murine gammaherpesvirus 68 (MHV-68) gB, gH, gL, and gp150 all participate in entry. gB and gL are involved in binding, gB and gH are conserved fusion proteins, and gp150 inhibits cell binding until glycosaminoglycans are engaged. Here we show that a gH-specific antibody coprecipitates gB and thus that gH and gB are associated in the virion membrane. A gH/gL-specific antibody also coprecipitated gB, implying a tripartite complex of gL/gH/gB, although the gH/gB association did not require gL. The association was also independent of gp150, and gp150 was not demonstrably bound to gB or gH. However, gp150 incorporation into virions was partly gL dependent, suggesting that it too contributes to a single entry complex. gp150− and gL− gp150− mutants bound better than the wild type to B cells and readily colonized B cells in vivo. Thus, gp150 and gL appear to be epithelial cell-adapted accessories of a core gB/gH entry complex. The cell binding revealed by gp150 disruption did not require gL and therefore seemed most likely to involve gB.

2020 ◽  
Author(s):  
Shana M. Owens ◽  
Jeffrey M. Sifford ◽  
Gang Li ◽  
Eduardo Salinas ◽  
Debopam Ghosh ◽  
...  

ABSTRACTGammaherpesviruses (GHVs) establish life-long infections and cause cancer in humans and other animals. To facilitate chronic infection, GHV oncoproteins promote cellular proliferation and differentiation. Aberrant cell-cycle progression driven by viral oncogenes should trigger activation of tumor suppressor p53, unless p53 is functionally deactivated during GHV latency establishment. However, interactions of GHVs with the p53 pathway during the establishment and maintenance of latent infection are poorly defined. Here we demonstrate in vivo that p53 is induced specifically in infected cells during latency establishment by murine gammaherpesvirus 68 (MHV68). In the absence of p53, MHV68 latency establishment was significantly increased, especially in germinal center B cells, and correlated with enhanced cellular proliferation. However, enhanced latency was not sustainable, and MHV68 exhibited a defect in long-term latency maintenance in p53-deficient mice. Moreover, IgH/c-Myc translocations were readily detected in B cells from infected p53-null mice indicating virus-driven genomic instability. These data demonstrate that p53 intrinsically restricts MHV68 latency establishment and reveal a paradigm in which a host restriction factor provides a long-term benefit to a chronic pathogen by limiting infection-associated damage.


2003 ◽  
Vol 77 (15) ◽  
pp. 8310-8321 ◽  
Author(s):  
David O. Willer ◽  
Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (γHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent γHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent γHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent γHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.


2008 ◽  
Vol 82 (16) ◽  
pp. 8000-8012 ◽  
Author(s):  
Paul D. Ling ◽  
Jie Tan ◽  
Jaturong Sewatanon ◽  
RongSheng Peng

ABSTRACT Promyelocytic Leukemia nuclear body (PML NB) proteins mediate an intrinsic cellular host defense response against virus infections. Herpesviruses express proteins that modulate PML or PML-associated proteins by a variety of strategies, including degradation of PML or relocalization of PML NB proteins. The consequences of PML-herpesvirus interactions during infection in vivo have yet to be investigated in detail, largely because of the species-specific tropism of many human herpesviruses. Murine gammaherpesvirus 68 (γHV68) is emerging as a suitable model to study basic biological questions of virus-host interactions because it naturally infects mice. Therefore, we sought to determine whether γHV68 targets PML NBs as part of its natural life cycle. We found that γHV68 induces PML degradation through a proteasome-dependent mechanism and that loss of PML results in more robust virus replication in mouse fibroblasts. Surprisingly, γHV68-mediated PML degradation was mediated by the virion tegument protein ORF75c, which shares homology with the cellular formylglycinamide ribotide amidotransferase enzyme. In addition, we show that ORF75c is essential for production of infectious virus. ORF75 homologs are conserved in all rhadinoviruses but so far have no assigned functions. Our studies shed light on a potential role for this unusual protein in rhadinovirus biology and suggest that γHV68 will be a useful model for investigation of PML-herpesvirus interactions in vivo.


2010 ◽  
Vol 84 (17) ◽  
pp. 8975-8979
Author(s):  
Janet Weslow-Schmidt ◽  
Fang Ye ◽  
Stephanie S. Cush ◽  
Kathleen A. Stuller ◽  
Marcia A. Blackman ◽  
...  

ABSTRACT It is still unknown whether a noninfectious gammaherpesvirus vaccine is able to prevent or reduce virus persistence. This led us to use dendritic cells loaded with tumor B cells as a vaccine approach for the murine gammaherpesvirus 68 (γHV68) model of infection. Dendritic cells loaded with UV-irradiated latently infected tumor B cells induce broad, strong, and long-lasting immunity against γHV68. Dendritic cell vaccination prevents the enlargement of lymph nodes and severely limits acute infection and early latency but does not prevent γHV68 from establishing long-term latency. Our findings support the concept that attenuated viruses may be the best vaccine option for preventing gammaherpesvirus persistence.


2002 ◽  
Vol 76 (13) ◽  
pp. 6532-6544 ◽  
Author(s):  
Eric T. Clambey ◽  
Herbert W. Virgin ◽  
Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (γHV68 [also known as MHV-68]) establishes a latent infection in mice, providing a small-animal model with which to identify host and viral factors that regulate gammaherpesvirus latency. While γHV68 establishes a latent infection in multiple tissues, including splenocytes and peritoneal cells, the requirements for latent infection within these tissues are poorly defined. Here we report the characterization of a spontaneous 9.5-kb-deletion mutant of γHV68 that lacks the M1, M2, M3, and M4 genes and eight viral tRNA-like genes. Previously, this locus has been shown to contain the latency-associated M2, M3, and viral tRNA-like genes. Through characterization of this mutant, we found that the M1, M2, M3, M4 genes and the viral tRNA-like genes are dispensable for (i) in vitro replication and (ii) the establishment and maintenance of latency in vivo and reactivation from latency following intraperitoneal infection. In contrast, following intranasal infection with this mutant, there was a defect in splenic latency at both early and late times, a phenotype not observed in peritoneal cells. These results indicate (i) that there are different genetic requirements for the establishment of latency in different latent reservoirs and (ii) that the genetic requirements for latency depend on the route of infection. While some of these phenotypes have been observed with specific mutations in the M1 and M2 genes, other phenotypes have never been observed with the available γHV68 mutants. These studies highlight the importance of loss-of-function mutations in defining the genetic requirements for the establishment and maintenance of herpesvirus latency.


2003 ◽  
Vol 77 (1) ◽  
pp. 624-630 ◽  
Author(s):  
Kristian K. Jensen ◽  
Shu-Cheng Chen ◽  
R. William Hipkin ◽  
Maria T. Wiekowski ◽  
Martin A. Schwarz ◽  
...  

ABSTRACT Chemokine-binding proteins represent a novel class of antichemokine agents encoded by poxviruses and herpesviruses. One such protein is encoded by the M3 gene present in the murine gammaherpesvirus 68 (MHV-68) genome. The M3 gene encodes a secreted 44-kDa protein that binds with high affinity to certain murine and human chemokines and has been shown to block chemokine signaling in vitro. However, there has been no direct evidence that M3 blocks chemokine activity in vivo, nor has the nature of M3-chemokine interaction been defined. To better understand the ability of M3 to block chemokine activity in vivo, we examined its interaction with a specific subset of chemokines expressed in lymphoid tissues, areas where gammaherpesviruses characteristically establish latency. Here we show that M3 blocks in vitro chemotaxis induced by CCL19 and CCL21, chemokines expressed constitutively in secondary lymphoid tissues. Moreover, we provide evidence that chemokine M3 binding exhibits positive cooperativity. In vivo, the expression of M3 in the pancreas of transgenic mice inhibits recruitment of lymphocytes induced by transgenic expression of CCL21 in this organ. The ability of M3 to block the biological activity of chemokines may represent an important strategy used by MHV-68 to evade immune detection and favor viral replication in the infected host.


2015 ◽  
Vol 89 (11) ◽  
pp. 5788-5800 ◽  
Author(s):  
Jing Qi ◽  
Chuanhui Han ◽  
Danyang Gong ◽  
Ping Liu ◽  
Sheng Zhou ◽  
...  

ABSTRACTReplication and transcription activator (RTA) of gammaherpesvirus is an immediate early gene product and regulates the expression of many downstream viral lytic genes. ORF48 is also conserved among gammaherpesviruses; however, its expression regulation and function remained largely unknown. In this study, we characterized the transcription unit ofORF48from murine gammaherpesvirus 68 (MHV-68) and analyzed its transcriptional regulation. We showed that RTA activates theORF48promoter via an RTA-responsive element (48pRRE). RTA binds to 48pRRE directlyin vitroand also associates with ORF48 promoterin vivo. Mutagenesis of 48pRRE in the context of the viral genome demonstrated that the expression of ORF48 is activated by RTA through 48pRRE duringde novoinfection. Through site-specific mutagenesis, we generated an ORF48-null virus and examined the function of ORF48in vitroandin vivo. The ORF48-null mutation remarkably reduced the viral replication efficiency in cell culture. Moreover, through intranasal or intraperitoneal infection of laboratory mice, we showed that ORF48 is important for viral lytic replication in the lung and establishment of latency in the spleen, as well as viral reactivation from latency. Collectively, our study identifiedORF48as an RTA-responsive gene and showed that ORF48 is important for MHV-68 replication bothin vitroandin vivo.IMPORTANCEThe replication and transcription activator (RTA), conserved among gammaherpesviruses, serves as a molecular switch for the virus life cycle. It works as a transcriptional regulator to activate the expression of many viral lytic genes. However, only a limited number of such downstream genes have been uncovered for MHV-68. In this study, we identifiedORF48as an RTA-responsive gene of MHV-68 and mapped theciselement involved. By constructing a mutant virus that is deficient in ORF48 expression and through infection of laboratory mice, we showed that ORF48 plays important roles in different stages of viral infectionin vivo. Our study provides insights into the transcriptional regulation and protein function of MHV-68, a desired model for studying gammaherpesviruses.


Sign in / Sign up

Export Citation Format

Share Document