host restriction
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 104)

H-INDEX

41
(FIVE YEARS 7)

2021 ◽  
Vol 21 (3) ◽  
pp. 109-112
Author(s):  
Kira S. Koryabina ◽  
Mariya V. Sergeeva ◽  
Andrey B. Komissarov ◽  
Nataliya V. Eshchenko ◽  
Grigoriy A. Stepanov

BACKGROUND: The application of CRISPR/Cas9 is one of the most rapidly developing areas in biotechnology. This method was used to obtain clones of а human origin cell line with knockout of one or more genes of the IFITM family, representing host restriction factors for influenza infection. Amphotericin B has previously been shown to promote influenza infection by blocking IFITM3 function. AIM: The aim of this study was to evaluate the effect of amphotericin B on the sensitivity of IFITM knockout cells to influenza A virus infection. MATERIALS AND METHODS: WI-38 VA-13 cells and mutant clones with IFITM3 knockout (F3 clone) or IFITM1, IFITM3 knockout (clone E12) were infected with influenza virus A/PR/8/34 (H1N1) in the presence or absence of amphotericin B. Forty-four hours after infection, the culture medium was taken to determine the infectious activity of the virus by titration in the MDCK cell culture, as well as the hemagglutinating activity of the virus. The infected cells were stained with fluorescently labeled antibodies against the viral NP protein, and the number of NP-positive cells was determined by flow cytometry. RESULTS: The addition of amphotericin B increased the hemagglutinating and infectious activity of the virus in WI-38 VA-13cells, while the difference was insignificant for clones with IFITM gene knockout. A similar dependency was obtained for the percent of infected cells. CONCLUSIONS: Mutant cells with a knockout of one or several genes of the IFITM family were equally susceptible to influenza infection regardless of the addition of amphotericin B, which confirms the crucial importance of a defect in the IFITM3 protein in increasing the permissiveness of cells to influenza A virus.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kai Ren ◽  
Ya Zhu ◽  
Honggang Sun ◽  
Shilin Li ◽  
Xiaoqiong Duan ◽  
...  

Abstract Background Although interferon regulatory factor 2 (IRF2) was reported to stimulate virus replication by suppressing the type I interferon signaling pathway, because cell cycle arrest was found to promote viral replication, IRF2-regulated replication fork factor (FAM111A and RFC3) might be able to affect ZIKV replication. In this study, we aimed to investigate the function of IRF2, FAM111A and RFC3 to ZIKV replication and underlying mechanism. Methods siIRF2, siFAM111A, siRFC3 and pIRF2 in ZIKV-infected A549, 2FTGH and U5A cells were used to explore the mechanism of IRF2 to inhibit ZIKV replication. In addition, their expression was analyzed by RT-qPCR and western blots, respectively. Results In this study, we found IRF2 expression was increased in ZIKV-infected A549 cells and IRF2 inhibited ZIKV replication independent of type I IFN signaling pathway. IRF2 could activate FAM111A expression and then enhanced the host restriction effect of RFC3 to inhibit replication of ZIKV. Conclusions We speculated the type I interferon signaling pathway might not play a leading role in regulating ZIKV replication in IRF2-silenced cells. We found IRF2 was able to upregulate FAM111A expression and thus enhance the host restriction effect of RFC3 on ZIKV.


2021 ◽  
Author(s):  
Joshua M Ames ◽  
Tejabhiram Yadavalli ◽  
Chandrashekhar Patil ◽  
James Hopkins ◽  
Ilina Bhattacharya ◽  
...  

Herpes stromal keratitis (HSK) is a result of the inflammatory sequelae following primary and recurrent Herpes simplex virus type-1 (HSV-1) infections. This pathology is known to be mediated by immunopathogenic T cell responses against viral antigens, however most individuals infected with HSV-1 never exhibit signs of this immunopathology. Recent studies have identified the host restriction factor, optineurin (OPTN), as an inhibitor of viral spread in the central nervous system, protecting hosts from viral encephalopathy. In an HSV-1 corneal infection mouse model on OPTN knockout mice, we assess the contribution of OPTN to ameliorating the clinical manifestations of HSK. We identify that OPTN protects the host from loss of ocular and whisker sensitivity and opacification of the cornea. scRNA-seq of the trigeminal ganglion (TG) reveals that transcription changes to the peripheral neurons and immune cell populations drive the expression of Il-17A in CD4 and CD8 T cells, as well as increased infiltration of T cells into the TG. This leads to demyelination and the observed HSK pathology.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1780
Author(s):  
Onur Kaynarcalidan ◽  
Sara Moreno Mascaraque ◽  
Ingo Drexler

Various vaccinia virus (VACV) strains were applied during the smallpox vaccination campaign to eradicate the variola virus worldwide. After the eradication of smallpox, VACV gained popularity as a viral vector thanks to increasing innovations in genetic engineering and vaccine technology. Some VACV strains have been extensively used to develop vaccine candidates against various diseases. Modified vaccinia virus Ankara (MVA) is a VACV vaccine strain that offers several advantages for the development of recombinant vaccine candidates. In addition to various host-restriction genes, MVA lacks several immunomodulatory genes of which some have proven to be quite efficient in skewing the immune response in an unfavorable way to control infection in the host. Studies to manipulate these genes aim to optimize the immunogenicity and safety of MVA-based viral vector vaccine candidates. Here we summarize the history and further work with VACV as a vaccine and present in detail the genetic manipulations within the MVA genome to improve its immunogenicity and safety as a viral vector vaccine.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2266
Author(s):  
Jyotsna Gokavi ◽  
Sharwari Sadawarte ◽  
Anant Shelke ◽  
Urmila Kulkarni-Kale ◽  
Madhuri Thakar ◽  
...  

TGF-β has been shown to play a differential role in either restricting or aiding HIV infection in different cell types, however its role in the cervical cells is hitherto undefined. Among females, more than 80% of infections occur through heterosexual contact where cervicovaginal mucosa plays a critical role, however the early events during the establishment of infection at female genital mucosa are poorly understood. We earlier showed that increased TGF-β level has been associated with cervical viral shedding in the HIV infected women, however a causal relationship could not be examined. Therefore, here we first established an in vitro cell-associated model of HIV infection in the cervical epithelial cells (ME-180) and demonstrated that TGF-β plays an important role as a negative regulator of HIV release in the infected cervical epithelial cells. Inhibition of miR-155 upregulated TGF-β signaling and mRNA expression of host restriction factors such as APOBEC-3G, IFI-16 and IFITM-3, while decreased the HIV release in ME-180 cells. To conclude, this is the first study to decipher the complex interplay between TGF-β, miR-155 and HIV release in the cervical epithelial cells. Collectively, our data suggest the plausible role of TGF-β in promoting HIV latency in cervical epithelial cells which needs further investigations.


2021 ◽  
Author(s):  
Zhaolong Li ◽  
Xu Yang ◽  
Zhilei Zhao ◽  
Xin Liu ◽  
Wenyan Zhang

The host restriction factor APOBEC3G (A3G) presents extensively inhibition on a variety of viruses, including retroviruses, DNA and RNA viruses. Our recent study showed that A3G inhibits enterovirus 71 (EV71) and coxsackievirus A16 (CA16) via competitively binding 5’UTR with the host protein poly(C)-binding protein 1 (PCBP1) that is required for multiple EVs replication. However, in addition to EV71 and CA16, whether A3G inhibits other EVs has not been investigated. Here, we demonstrate that A3G could inhibit EVD68 replication, which needs PCBP1 for its replication, but not CA6 that PCBP1 is dispensable for CA6 replication. Further investigation revealed that nucleic acid binding activity of A3G is required for EVD68 restriction, which is similar to the mechanism presented in EV71 restriction. Mechanistically, A3G competitively binds to the cloverleaf (1–123) and the stem-loop IV (234-446) domains of EVD68 5’UTR with PCBP1, thereby inhibiting the 5'UTR activity of EVD68, whereas A3G doesn’t interact with CA6 5’UTR results in no effect on CA6 replication. Moreover, non-structural protein 2C encoded by EVD68 overcomes A3G suppression through inducing A3G degradation via the autophagy-lysosome pathway. Our finding revealed that A3G might have broad spectrum antiviral activity against multiple EVs through the general mechanism, which might provide important information for the development of anti-EVs strategy. Importance As the two major pathogens causing hand, food, and mouth disease (HFMD), EV71 and CA16 attract more attention for the discovery of pathogenesis, the involvement of cellular proteins and so on. However, other EVs such as CA6 or EVD68 constantly occurred sporadic or might spread widely in recent years worldwide. Therefore, more information related to these EVs needs to be further investigated so as to develop broad-spectrum anti-EVs inhibitor. In this study, we first reveal that PCBP1 involved in PV and EV71 virus replication, also is required for the replication of EVD68 but not CA6. Then we found that the host restriction factor A3G specifically inhibits the replication of EVD68 but not CA6 via competitively binding to the 5’UTR of EVD68 with PCBP1. Our findings broaden the knowledge related to EVs replication and the interplay between EVs and host factors.


2021 ◽  
Author(s):  
Yifei Zhao ◽  
Juan Du ◽  
Yu Wang ◽  
Qing Wang ◽  
Shaohua Wang ◽  
...  

Endogenous retrotransposons are considered the “molecular fossils” of ancient retroviral insertions. Several studies have indicated that host factors restrict both retroviruses and retrotransposons through different mechanisms. Type 1 long interspersed elements (LINE-1 or L1) are the only active retroelements that can replicate autonomously in the human genome. A recent study reported that LINE-1 retrotransposition is potently suppressed by BST2, a host restriction factor that prevents viral release mainly by physically tethering enveloped virions (such as human immunodeficiency virus [HIV]) to the surface of producer cells. However, no endoplasmic membrane structure has been associated with LINE-1 replication, suggesting that BST2 may utilize a distinct mechanism to suppress LINE-1. In this study, we showed that BST2 is a potent LINE-1 suppressor. Further investigations suggested that BST2 reduces the promoter activity of LINE-1 5’-UTR and lowers the levels of LINE-1 RNA, proteins, and events during LINE-1 retrotransposition. Surprisingly, although BST2 apparently uses different mechanisms against HIV and LINE-1, two membrane-associated domains that are essential for BST2-mediated HIV tethering also proved important for BST2-induced inhibition of LINE-1 5’-UTR. Additionally, by suppressing LINE-1, BST2 prevented LINE-1-induced genomic DNA damage and innate immune activation. Taken together, our data uncovered the mechanism of BST2-mediated LINE-1 suppression and revealed new roles of BST2 as a promoter regulator, genome stabilizer, and innate immune suppressor. IMPORTANCE BST2 is a potent antiviral protein that suppresses the release of several enveloped viruses, mainly by tethering the envelope of newly synthesized virions and restraining them on the surface of producer cells. In mammalian cells, there are numerous DNA elements replicating through reverse transcription, among which LINE-1 is the only retroelement that can replicate autonomously. Although LINE-1 retrotransposition does not involve the participation of a membrane structure, BST2 has been reported as an efficient LINE-1 suppressor, suggesting a different mechanism for BST2-mediated LINE-1 inhibition and a new function for BST2 itself. We found that BST2 specifically represses the promoter activity of LINE-1 5’-UTR, resulting in decreased levels of LINE-1 transcription, translation, and subsequent retrotransposition. Additionally, by suppressing LINE-1 activity, BST2 maintains genome stability and regulates innate immune activation. These findings expand our understanding of BST2 and its biological significance.


2021 ◽  
Vol 20 ◽  
pp. S192-S193
Author(s):  
C. Armbruster ◽  
C. Marshall ◽  
A. Garber ◽  
J. Melvin ◽  
A. Zemke ◽  
...  

2021 ◽  
Vol 17 (10) ◽  
pp. e1009609
Author(s):  
Michaël M. Martin ◽  
Roy Matkovic ◽  
Pauline Larrous ◽  
Marina Morel ◽  
Angélique Lasserre ◽  
...  

Human Immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) succeed to evade host immune defenses by using their viral auxiliary proteins to antagonize host restriction factors. HIV-2/SIVsmm Vpx is known for degrading SAMHD1, a factor impeding the reverse transcription. More recently, Vpx was also shown to counteract HUSH, a complex constituted of TASOR, MPP8 and periphilin, which blocks viral expression from the integrated viral DNA. In a classical ubiquitin ligase hijacking model, Vpx bridges the DCAF1 ubiquitin ligase substrate adaptor to SAMHD1, for subsequent ubiquitination and degradation. Here, we investigated whether the same mechanism is at stake for Vpx-mediated HUSH degradation. While we confirm that Vpx bridges SAMHD1 to DCAF1, we show that TASOR can interact with DCAF1 in the absence of Vpx. Nonetheless, this association was stabilized in the presence of Vpx, suggesting the existence of a ternary complex. The N-terminal PARP-like domain of TASOR is involved in DCAF1 binding, but not in Vpx binding. We also characterized a series of HIV-2 Vpx point mutants impaired in TASOR degradation, while still degrading SAMHD1. Vpx mutants ability to degrade TASOR correlated with their capacity to enhance HIV-1 minigenome expression as expected. Strikingly, several Vpx mutants impaired for TASOR degradation, but not for SAMHD1 degradation, had a reduced binding affinity for DCAF1, but not for TASOR. In macrophages, Vpx R34A-R42A and Vpx R42A-Q47A-V48A, strongly impaired in DCAF1, but not in TASOR binding, could not degrade TASOR, while being efficient in degrading SAMHD1. Altogether, our results highlight the central role of a robust Vpx-DCAF1 association to trigger TASOR degradation. We then propose a model in which Vpx interacts with both TASOR and DCAF1 to stabilize a TASOR-DCAF1 complex. Furthermore, our work identifies Vpx mutants enabling the study of HUSH restriction independently from SAMHD1 restriction in primary myeloid cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Lu ◽  
Jiajun Ou ◽  
Siqi Cai ◽  
Zhiying Lai ◽  
Lintao Zhong ◽  
...  

Canine influenza virus (CIV) is an emerging virus that is associated with major hidden hazards to the canine population and public health. Until now, how canine uses its innate immunity to restrict CIV replication is seldomly investigated. Recently, studies on interferon-inducible transmembrane (IFITM) of several major hosts of influenza virus (human, chicken, duck, pig) indicated it can potently restrict the viral replication. Here, the gene locus of five previously annotated canine IFITM (caIFITM) genes was determined on chromosome 18 using multiple bioinformatics strategies, provisionally designated as caIFITM1, caIFITM2a, caIFITM2b, caIFITM3, and caIFITM5. An analysis on protein sequences between caIFITM and its homologs indicated they shared the same conserved amino acids important for the antiviral activity. Expression profile analysis showed that caIFITM was constitutively expressed in tissues and MDCK cell line. After treatment with interferon or infection with influenza virus, the expression level of caIFITM increased with different degrees in vitro. An animal challenge study demonstrated CIV infection resulted in upregulation of caIFITM in beagles. caIFITMs had a similar subcellular localization to their human homologs. caIFITM1 was present at the cell surface and caIFITM3 was present perinuclearly and colocalized with LAMP1-containing compartments. Finally, we generated A549 cell lines stably expressing caIFITM and challenged them with influenza virus. The result demonstrated caIFITM1, caIFITM2a, caIFITM2b, and caIFITM3 had a potent antiviral activity against influenza virus. Our study will help better understand the evolutional pattern of IFITM and its role in the host’s defense against virus infection.


Sign in / Sign up

Export Citation Format

Share Document