vaccine approach
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258637
Author(s):  
Raianna F. Fantin ◽  
Vanessa G. Fraga ◽  
Camila A. Lopes ◽  
Isabella C. de Azevedo ◽  
João L. Reis-Cunha ◽  
...  

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


2021 ◽  
Vol 8 (3) ◽  
pp. 177-178
Author(s):  
Sunil Chaudhry
Keyword(s):  

2021 ◽  
Author(s):  
Jaekeun Park ◽  
Sharon Fong ◽  
Louis M. Schwartzman ◽  
Zhong-Mei Sheng ◽  
Ashley Freeman ◽  
...  

AbstractInfluenza A viruses (IAVs) present major public health threats from annual seasonal epidemics, from pandemics caused by novel virus subtypes, and from viruses adapted to a variety of animals including poultry, pigs and horses. Vaccines that broadly protect against all such IAVs, so-called “universal” influenza vaccines, do not currently exist, but are urgently needed. This study demonstrates that an inactivated, multivalent whole virus vaccine, delivered intramuscularly or intranasally, is broadly protective against challenges with multiple IAV HA/NA subtypes in both mice and ferrets, including challenges with IAV subtypes not contained in the vaccine. This vaccine approach indicates the feasibility of eliciting broad “universal” IAV protection, and identifies a promising candidate for influenza vaccine clinical development.One-Sentence SummaryAn inactivated, whole avian influenza virus vaccine delivered intramuscularly or intranasally provides extremely broad protection against antigenically divergent viral challenge and is a promising candidate for a “universal” influenza virus vaccine.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1050
Author(s):  
Stefan Magez ◽  
Zeng Li ◽  
Hang Thi Thu Nguyen ◽  
Joar Esteban Pinto Torres ◽  
Pieter Van Wielendaele ◽  
...  

Salivarian trypanosomes comprise a group of extracellular anthroponotic and zoonotic parasites. The only sustainable method for global control of these infection is through vaccination of livestock animals. Despite multiple reports describing promising laboratory results, no single field-applicable solution has been successful so far. Conventionally, vaccine research focusses mostly on exposed immunogenic antigens, or the structural molecular knowledge of surface exposed invariant immunogens. Unfortunately, extracellular parasites (or parasites with extracellular life stages) have devised efficient defense systems against host antibody attacks, so they can deal with the mammalian humoral immune response. In the case of trypanosomes, it appears that these mechanisms have been perfected, leading to vaccine failure in natural hosts. Here, we provide two examples of potential vaccine candidates that, despite being immunogenic and accessible to the immune system, failed to induce a functionally protective memory response. First, trypanosomal enolase was tested as a vaccine candidate, as it was recently characterized as a highly conserved enzyme that is readily recognized during infection by the host antibody response. Secondly, we re-addressed a vaccine approach towards the Invariant Surface Glycoprotein ISG75, and showed that despite being highly immunogenic, trypanosomes can avoid anti-ISG75 mediated parasitemia control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Antonella Scaglione ◽  
Silvana Opp ◽  
Alicia Hurtado ◽  
Ziyan Lin ◽  
Christine Pampeno ◽  
...  

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world’s population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical, and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles, and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response, which can be used as a new candidate to combat SARS-CoV-2. Given the T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shimaa M. G. Mansour ◽  
Reham M. ElBakrey ◽  
Fakry F. Mohamed ◽  
Esraa E. Hamouda ◽  
Mona S. Abdallah ◽  
...  

Avian orthoavulavirus 1, formerly known as avian paramyxovirus type-1 (APMV-1), infects more than 250 different species of birds. It causes a broad range of clinical diseases and results in devastating economic impact due to high morbidity and mortality in addition to trade restrictions. The ease of spread has allowed the virus to disseminate worldwide with subjective virulence, which depends on the virus strain and host species. The emergence of new virulent genotypes among global epizootics, including those from Egypt, illustrates the time-to-time genomic alterations that lead to simultaneous evolution of distinct APMV-1 genotypes at different geographic locations across the world. In Egypt, the Newcastle disease was firstly reported in 1947 and continued to occur, despite rigorous prophylactic vaccination, and remained a potential threat to commercial and backyard poultry production. Since 2005, many researchers have investigated the nature of APMV-1 in different outbreaks, as they found several APMV-1 genotypes circulating among various species. The unique intermingling of migratory, free-living, and domesticated birds besides the availability of frequently mobile wild birds in Egypt may facilitate the evolution power of APMV-1 in Egypt. Pigeons and waterfowls are of interest due to their inclusion in Egyptian poultry industry and their ability to spread the infection to other birds either by presence of different genotypes (as in pigeons) or by harboring a clinically silent disease (as in waterfowl). This review details (i) the genetic and pathobiologic features of APMV-1 infections in Egypt, (ii) the epidemiologic and evolutionary events in different avian species, and (iii) the vaccine applications and challenges in Egypt.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lemu Golassa ◽  
Alebachew Messele ◽  
Eniyou Cheryll Oriero ◽  
Alfred Amambua-Ngwa

Abstract Background Red blood cell invasion by the Plasmodium vivax merozoite requires interaction between the Duffy antigen receptor for chemokines (DARC) and the P. vivax Duffy-binding protein II (PvDBPII). Given that the disruption of this interaction prevents P. vivax blood-stage infection, a PvDBP-based vaccine development has been well recognized. However, the polymorphic nature of PvDBPII prevents a strain transcending immune response and complicates attempts to design a vaccine. Methods Twenty-three P. vivax clinical isolates collected from three areas of Ethiopia were sequenced at the pvdbpII locus. A total of 392 global pvdbpII sequences from seven P. vivax endemic countries were also retrieved from the NCBI archive for comparative analysis of genetic diversity, departure from neutrality, linkage disequilibrium, genetic differentiation, PvDBP polymorphisms, recombination and population structure of the parasite population. To establish a haplotype relationship a network was constructed using the median joining algorithm. Results A total of 110 variable sites were found, of which 44 were parsimony informative. For Ethiopian isolates there were 12 variable sites of which 10 were parsimony informative. These parsimony informative variants resulted in 10 nonsynonymous mutations. The overall haplotype diversity for global isolates was 0.9596; however, the haplotype diversity was 0.874 for Ethiopia. Fst values for genetic revealed Ethiopian isolates were closest to Indian isolates as well as to Sri Lankan and Sudanese isolates but further away from Mexican, Papua New Guinean and South Korean isolates. There was a total of 136 haplotypes from the 415 global isolates included for this study. Haplotype prevalence ranged from 36.76% to 0.7%, from this 74.2% were represented by single parasite isolates. None of the Ethiopian isolates grouped with the Sal I reference haplotype. From the total observed nonsynonymous mutations 13 mapped to experimentally verified epitope sequences. Including 10 non-synonymous mutations from Ethiopia. However, all the polymorphic regions in Ethiopian isolates were located away from DARC, responsible for junction formation. Conclusion The results of this study are concurrent with the multivalent vaccine approach to design an effective treatment. However, the presence of novel haplotypes in Ethiopian isolates that were not shared by other global sequences warrant further investigation.


2021 ◽  
Author(s):  
Lei Li ◽  
Yoshikazu Honda-Okubo ◽  
Ying Huang ◽  
Hyesun Jang ◽  
Michael A Carlock ◽  
...  

The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. The Advax-SM adjuvanted vaccine induced high titers of binding antibody against spike protein that were able to neutralise the original wildtype virus on which the vaccine was based as well as the variant B.1.1.7 lineage virus. The Covax-19 vaccine also induced potent spike-specific CD4+ and CD8+ memory T-cells with a dominant Th1 phenotype, and this was shown to be associated with cytotoxic T lymphocyte killing of spike labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus 2 weeks after the second immunisation. Notably, ferrets that received two 25 or 50ug doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting the possibility that Covax-19 vaccine may in addition to protection against lung infection also have the potential to block virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.


2021 ◽  
Author(s):  
Antonella Scaglione ◽  
Silvana Opp ◽  
Alicia Hurtado ◽  
Christine Pampeno ◽  
Ziyan Lin ◽  
...  

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world population at record speeds. However, there is still demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (OX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T cell response in mice. Protein binding, immunohistochemical and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response that can be used as a new candidate to combat SARS-CoV-2. Given the strong T cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as, serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.


2021 ◽  
Author(s):  
Zhujun Ao ◽  
Lijun Wang ◽  
Hiva Azizi ◽  
Titus Olukitibi Abiola ◽  
Gary Kobinger ◽  
...  

The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. We herein developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 aa) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice that immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of IFN-γ, IL-2, IL-4, IL-5 and MIP-1α. Additionally, we demonstrated that co-expression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. Importance Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel Dendritic Cells (DC)-targeted vaccination approach against HIV-1. The results have clearly shown that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein comprised of a DC-targeting domain of Ebola GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in sera and vaginal mucosa. These findings have provided a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.


Sign in / Sign up

Export Citation Format

Share Document