scholarly journals Dendritic Cells Loaded with Tumor B Cells Elicit Broad Immunity against Murine Gammaherpesvirus 68 but Fail To Prevent Long-Term Latency

2010 ◽  
Vol 84 (17) ◽  
pp. 8975-8979
Author(s):  
Janet Weslow-Schmidt ◽  
Fang Ye ◽  
Stephanie S. Cush ◽  
Kathleen A. Stuller ◽  
Marcia A. Blackman ◽  
...  

ABSTRACT It is still unknown whether a noninfectious gammaherpesvirus vaccine is able to prevent or reduce virus persistence. This led us to use dendritic cells loaded with tumor B cells as a vaccine approach for the murine gammaherpesvirus 68 (γHV68) model of infection. Dendritic cells loaded with UV-irradiated latently infected tumor B cells induce broad, strong, and long-lasting immunity against γHV68. Dendritic cell vaccination prevents the enlargement of lymph nodes and severely limits acute infection and early latency but does not prevent γHV68 from establishing long-term latency. Our findings support the concept that attenuated viruses may be the best vaccine option for preventing gammaherpesvirus persistence.

mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Sandeep Steven Reddy ◽  
Hui-Chen Chang Foreman ◽  
Thubten Ozula Sioux ◽  
Gee Ho Park ◽  
Valeria Poli ◽  
...  

ABSTRACTA challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence.IMPORTANCEThe insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.


2021 ◽  
Author(s):  
Isobel C. Mouat ◽  
Iryna Shanina ◽  
Marc S. Horwitz

Age-associated B cells (ABCs; CD19+CD11c+T-bet+) are increased during an array of viral infections, though their role during viral latency is unexplored. Here, we use murine gammaherpesvirus 68 (γHV68), a homolog of Epstein-Barr virus that latently infects B cells, to demonstrate that ABCs are necessary for the effective control of gamma-herpesvirus latency. We observe that ABCs expand in the spleen during acute infection and persist at least 150 days post-infection. During acute and latent infection ABCs secrete IFNγ and TNF. Using a strain of γHV68 that is cleared following acute infection, we show that ABCs persist in the absence of latent virus, though they secrete less IFNγ and TNF. With a fluorescent virus we demonstrate that ABCs are infected with γHV68 at similar rates to other mature B cells. We find that mice without ABCs display defects in anti-viral IgG2a/c antibodies and are less able to maintain γHV68 latency when challenged with heterologous infection. Together, these results indicate that ABCs are a persistent subset during latent viral infection that controls γHV68 reactivation from latency.


2020 ◽  
Author(s):  
Shana M. Owens ◽  
Jeffrey M. Sifford ◽  
Gang Li ◽  
Eduardo Salinas ◽  
Debopam Ghosh ◽  
...  

ABSTRACTGammaherpesviruses (GHVs) establish life-long infections and cause cancer in humans and other animals. To facilitate chronic infection, GHV oncoproteins promote cellular proliferation and differentiation. Aberrant cell-cycle progression driven by viral oncogenes should trigger activation of tumor suppressor p53, unless p53 is functionally deactivated during GHV latency establishment. However, interactions of GHVs with the p53 pathway during the establishment and maintenance of latent infection are poorly defined. Here we demonstrate in vivo that p53 is induced specifically in infected cells during latency establishment by murine gammaherpesvirus 68 (MHV68). In the absence of p53, MHV68 latency establishment was significantly increased, especially in germinal center B cells, and correlated with enhanced cellular proliferation. However, enhanced latency was not sustainable, and MHV68 exhibited a defect in long-term latency maintenance in p53-deficient mice. Moreover, IgH/c-Myc translocations were readily detected in B cells from infected p53-null mice indicating virus-driven genomic instability. These data demonstrate that p53 intrinsically restricts MHV68 latency establishment and reveal a paradigm in which a host restriction factor provides a long-term benefit to a chronic pathogen by limiting infection-associated damage.


2003 ◽  
Vol 77 (15) ◽  
pp. 8310-8321 ◽  
Author(s):  
David O. Willer ◽  
Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (γHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent γHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent γHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent γHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.


2007 ◽  
Vol 88 (7) ◽  
pp. 1896-1905 ◽  
Author(s):  
Romana Hochreiter ◽  
Catherine Ptaschinski ◽  
Steven L. Kunkel ◽  
Rosemary Rochford

Many viruses have evolved mechanisms to evade host immunity by subverting the function of dendritic cells (DCs). This study determined whether murine gammaherpesvirus-68 (γHV-68) could infect immature or mature bone-marrow-derived DCs and what effect infection had on DC maturation. It was found that γHV-68 productively infected immature DCs, as evidenced by increased viral titres over time. If DCs were induced to mature by exposure to LPS and then infected with γHV-68, only a small percentage of cells was productively infected. However, limiting-dilution assays to measure viral reactivation demonstrated that the mature DCs were latently infected with γHV-68. Electron microscopy revealed the presence of capsids in the nucleus of immature DCs but not in mature DCs. Interestingly, infection of immature DCs by γHV-68 did not result in upregulation of the co-stimulatory molecules CD80 and CD86 or MHC class I and II, or induce cell migration, suggesting that the virus infection did not induce DC maturation. Furthermore, γHV-68 infection of immature DCs did not result in elevated interleukin-12, an important cytokine in the induction of T-cell responses. Finally, lipopolysaccharide and poly(I : C) stimulation of γHV-68-infected immature DCs did not induce increases in the expression of co-stimulatory molecules and MHC class I or II compared with mock-treated cells, suggesting that γHV-68 infection blocked maturation. Taken together, these data demonstrate that γHV-68 infection of DCs differs depending on the maturation state of the DC. Moreover, the block in DC maturation suggests a possible immunoevasion strategy by γHV-68.


2007 ◽  
Vol 81 (23) ◽  
pp. 13082-13091 ◽  
Author(s):  
Laurent Gillet ◽  
Philip G. Stevenson

ABSTRACT Herpesviruses use multiple virion glycoproteins to enter cells. How these work together is not well understood: some may act separately or they may form a single complex. Murine gammaherpesvirus 68 (MHV-68) gB, gH, gL, and gp150 all participate in entry. gB and gL are involved in binding, gB and gH are conserved fusion proteins, and gp150 inhibits cell binding until glycosaminoglycans are engaged. Here we show that a gH-specific antibody coprecipitates gB and thus that gH and gB are associated in the virion membrane. A gH/gL-specific antibody also coprecipitated gB, implying a tripartite complex of gL/gH/gB, although the gH/gB association did not require gL. The association was also independent of gp150, and gp150 was not demonstrably bound to gB or gH. However, gp150 incorporation into virions was partly gL dependent, suggesting that it too contributes to a single entry complex. gp150− and gL− gp150− mutants bound better than the wild type to B cells and readily colonized B cells in vivo. Thus, gp150 and gL appear to be epithelial cell-adapted accessories of a core gB/gH entry complex. The cell binding revealed by gp150 disruption did not require gL and therefore seemed most likely to involve gB.


2006 ◽  
Vol 80 (12) ◽  
pp. 6123-6135 ◽  
Author(s):  
Lénia Rodrigues ◽  
Marta Pires de Miranda ◽  
María J. Caloca ◽  
Xosé R. Bustelo ◽  
J. Pedro Simas

ABSTRACT Gammaherpesviruses subvert eukaryotic signaling pathways to favor latent infections in their cellular reservoirs. To this end, they express proteins that regulate or replace functionally specific signaling proteins of eukaryotic cells. Here we describe a new type of such viral-host interaction that is established through M2, a protein encoded by murine gammaherpesvirus 68. M2 associates with Vav proteins, a family of phosphorylation-dependent Rho/Rac exchange factors that play critical roles in lymphocyte signaling. M2 expression leads to Vav1 hyperphosphorylation and to the subsequent stimulation of its exchange activity towards Rac1, a process mediated by the formation of a trimolecular complex with Src kinases. This heteromolecular complex is coordinated by proline-rich and Src family-dependent phosphorylated regions of M2. Infection of Vav-deficient mice with gammaherpesvirus 68 results in increased long-term levels of latency in germinal center B lymphocytes, corroborating the importance of the M2/Vav cross talk in the process of viral latency. These results reveal a novel strategy used by the murine gammaherpesvirus family to subvert the lymphocyte signaling machinery to its own benefit.


2006 ◽  
Vol 80 (3) ◽  
pp. 1592-1598 ◽  
Author(s):  
Janice M. Moser ◽  
Michael L. Farrell ◽  
Laurie T. Krug ◽  
Jason W. Upton ◽  
Samuel H. Speck

ABSTRACT The gammaherpesvirus immediate-early genes are critical regulators of virus replication and reactivation from latency. Rta, encoded by gene 50, serves as the major transactivator of the lytic program and is highly conserved among all the gammaherpesviruses, including Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and murine gammaherpesvirus 68 (γHV68). Introduction of a translation stop codon in γHV68 gene 50 (gene 50.stop γHV68) demonstrated that Rta is essential for virus replication in vitro. To investigate the role that virus replication plays in the establishment and maintenance of latency, we infected mice with gene 50.stop γHV68. Notably, the gene 50.stop virus established a long-term infection in lung B cells following intranasal infection of mice but was unable to establish latency in the spleen. This complete block in the establishment of latency in the spleen was also seen when lytic virus production was inhibited by treating mice infected with wild-type virus with the antiviral drug cidofovir, implicating virus replication and not an independent function of Rta in the establishment of splenic latency. Furthermore, we showed that gene 50.stop γHV68 was unable to prime the immune system and was unable to protect against a challenge with wild-type γHV68, despite its ability to chronically infect lung B cells. These data indicate gammaherpesviruses that are unable to undergo lytic replication in vivo may not be viable vaccine candidates despite the detection of cells harboring viral genome at late times postinfection.


Sign in / Sign up

Export Citation Format

Share Document