scholarly journals Long-Term Latent Murine Gammaherpesvirus 68 Infection Is Preferentially Found within the Surface Immunoglobulin D-Negative Subset of Splenic B Cells In Vivo

2003 ◽  
Vol 77 (15) ◽  
pp. 8310-8321 ◽  
Author(s):  
David O. Willer ◽  
Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (γHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent γHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent γHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent γHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.

2020 ◽  
Author(s):  
Shana M. Owens ◽  
Jeffrey M. Sifford ◽  
Gang Li ◽  
Eduardo Salinas ◽  
Debopam Ghosh ◽  
...  

ABSTRACTGammaherpesviruses (GHVs) establish life-long infections and cause cancer in humans and other animals. To facilitate chronic infection, GHV oncoproteins promote cellular proliferation and differentiation. Aberrant cell-cycle progression driven by viral oncogenes should trigger activation of tumor suppressor p53, unless p53 is functionally deactivated during GHV latency establishment. However, interactions of GHVs with the p53 pathway during the establishment and maintenance of latent infection are poorly defined. Here we demonstrate in vivo that p53 is induced specifically in infected cells during latency establishment by murine gammaherpesvirus 68 (MHV68). In the absence of p53, MHV68 latency establishment was significantly increased, especially in germinal center B cells, and correlated with enhanced cellular proliferation. However, enhanced latency was not sustainable, and MHV68 exhibited a defect in long-term latency maintenance in p53-deficient mice. Moreover, IgH/c-Myc translocations were readily detected in B cells from infected p53-null mice indicating virus-driven genomic instability. These data demonstrate that p53 intrinsically restricts MHV68 latency establishment and reveal a paradigm in which a host restriction factor provides a long-term benefit to a chronic pathogen by limiting infection-associated damage.


2004 ◽  
Vol 78 (2) ◽  
pp. 758-767 ◽  
Author(s):  
A. C. Townsley ◽  
B. M. Dutia ◽  
A. A. Nash

ABSTRACT Murine gammaherpesvirus 68 (MHV-68) infection of mice represents a viable small-animal model for the study of gammaherpesvirus pathogenesis. MHV-76 is a deletion mutant of MHV-68, which lacks four MHV-68-specific genes (M1 to M4) and eight viral tRNA-like sequences at the 5′ end of the genome. These genes are implicated in latency and/or immune evasion. Consequently, MHV-76 is attenuated in the acute phase of in vivo infection with respect to MHV-68. Little is known about the role of M4 in viral infection, except that it is expressed as an immediate-early/early transcript during lytic replication of MHV-68 in vitro. To elucidate the contribution M4 makes to in vivo pathogenesis, we created a novel MHV-76 mutant (MHV-76inM4), in which the region of MHV-68 coding for M4 and accompanying putative promoter elements were inserted into the 5′ region of the MHV-76 genome. The growth of MHV-76inM4 in vitro was indistinguishable from that of MHV-76 and MHV-68. However, virus titers from MHV-76inM4-infected BALB/c mice were significantly increased with respect to MHV-76 at early times in the lung. In addition, at days 17 and 21 postinfection, there was a significant elevation in latent viral load in splenocytes of MHV-76inM4-infected mice compared to MHV-76. Like MHV-76-infected mice, MHV-76inM4-infected mice display no evidence of overt splenomegaly, a finding characteristic of MHV-68 infection. M4 expression in vivo was detectable during productive infection in the lung and during the establishment of latency in the spleen, but in general M4 was not detectable during long-term latency (day 100 postinfection).


2010 ◽  
Vol 84 (17) ◽  
pp. 8975-8979
Author(s):  
Janet Weslow-Schmidt ◽  
Fang Ye ◽  
Stephanie S. Cush ◽  
Kathleen A. Stuller ◽  
Marcia A. Blackman ◽  
...  

ABSTRACT It is still unknown whether a noninfectious gammaherpesvirus vaccine is able to prevent or reduce virus persistence. This led us to use dendritic cells loaded with tumor B cells as a vaccine approach for the murine gammaherpesvirus 68 (γHV68) model of infection. Dendritic cells loaded with UV-irradiated latently infected tumor B cells induce broad, strong, and long-lasting immunity against γHV68. Dendritic cell vaccination prevents the enlargement of lymph nodes and severely limits acute infection and early latency but does not prevent γHV68 from establishing long-term latency. Our findings support the concept that attenuated viruses may be the best vaccine option for preventing gammaherpesvirus persistence.


2007 ◽  
Vol 81 (23) ◽  
pp. 13082-13091 ◽  
Author(s):  
Laurent Gillet ◽  
Philip G. Stevenson

ABSTRACT Herpesviruses use multiple virion glycoproteins to enter cells. How these work together is not well understood: some may act separately or they may form a single complex. Murine gammaherpesvirus 68 (MHV-68) gB, gH, gL, and gp150 all participate in entry. gB and gL are involved in binding, gB and gH are conserved fusion proteins, and gp150 inhibits cell binding until glycosaminoglycans are engaged. Here we show that a gH-specific antibody coprecipitates gB and thus that gH and gB are associated in the virion membrane. A gH/gL-specific antibody also coprecipitated gB, implying a tripartite complex of gL/gH/gB, although the gH/gB association did not require gL. The association was also independent of gp150, and gp150 was not demonstrably bound to gB or gH. However, gp150 incorporation into virions was partly gL dependent, suggesting that it too contributes to a single entry complex. gp150− and gL− gp150− mutants bound better than the wild type to B cells and readily colonized B cells in vivo. Thus, gp150 and gL appear to be epithelial cell-adapted accessories of a core gB/gH entry complex. The cell binding revealed by gp150 disruption did not require gL and therefore seemed most likely to involve gB.


2001 ◽  
Vol 75 (11) ◽  
pp. 5315-5327 ◽  
Author(s):  
Alastair I. Macrae ◽  
Bernadette M. Dutia ◽  
Steven Milligan ◽  
David G. Brownstein ◽  
Deborah J. Allen ◽  
...  

ABSTRACT Infection of mice by murine gammaherpesvirus 68 (MHV-68) is an excellent small-animal model of gammaherpesvirus pathogenesis in a natural host. We have carried out comparative studies of another herpesvirus, murine herpesvirus 76 (MHV-76), which was isolated at the same time as MHV-68 but from a different murid host, the yellow-necked mouse (Apodemus flavicollis). Molecular analyses revealed that the MHV-76 genome is essentially identical to that of MHV-68, except for deletion of 9,538 bp at the left end of the unique region. MHV-76 is therefore a deletion mutant that lacks four genes unique to MHV-68 (M1, M2,M3, and M4) as well as the eight viral tRNA-like genes. Replication of MHV-76 in cell culture was identical to that of MHV-68. However, following infection of mice, MHV-76 was cleared more rapidly from the lungs. In line with this, there was an increased inflammatory response in lungs with MHV-76. Splenomegaly was also significantly reduced following MHV-76 infection, and much less latent MHV-76 was detected in the spleen. Nevertheless, MHV-76 maintained long-term latency in the lungs and spleen. We utilized a cosmid containing the left end of the MHV-68 genome to reinsert the deleted sequence into MHV-76 by recombination in infected cells, and we isolated a rescuant virus designated MHV-76(cA8+)4 which was ostensibly genetically identical to MHV-68. The growth properties of the rescuant in infected mice were identical to those of MHV-68. These results demonstrate that genetic elements at the left end of the unique region of the MHV-68 genome play vital roles in host evasion and are critical to the development of splenic pathology.


2005 ◽  
Vol 86 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Brigitte D. de Lima ◽  
Janet S. May ◽  
Sofia Marques ◽  
J. Pedro Simas ◽  
Philip G. Stevenson

The gammaherpesviruses are characteristically latent in lymphocytes and exploit lymphocyte proliferation to establish a large, persistent pool of latent genomes. Murine gammaherpesvirus 68 (MHV-68) allows the in vivo analysis of viral genes that contribute to this and other aspects of host colonization. In this study, the MHV-68 bcl-2 homologue, M11, was disrupted either in its BH1 homology domain or upstream of its membrane-localizing C-terminal domain. Each M11 mutant showed normal lytic replication in vitro and in vivo, but had a reduction in peak splenic latency. Lower infectious-centre titres correlated with lower in vivo B-cell activation, lower viral genome loads and reduced viral tRNA expression. This was therefore a true latency deficit, rather than a deficit in ex vivo reactivation. Stable, long-term levels of splenic latency were normal. M11 function therefore contributed specifically to viral latency amplification in infected lymphoid tissue.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Sandeep Steven Reddy ◽  
Hui-Chen Chang Foreman ◽  
Thubten Ozula Sioux ◽  
Gee Ho Park ◽  
Valeria Poli ◽  
...  

ABSTRACTA challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence.IMPORTANCEThe insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.


2008 ◽  
Vol 82 (7) ◽  
pp. 3295-3310 ◽  
Author(s):  
Jeremy H. Herskowitz ◽  
Andrea M. Siegel ◽  
Meagan A. Jacoby ◽  
Samuel H. Speck

ABSTRACT Murine gammaherpesvirus 68 (MHV68) infection of inbred mice represents a genetically tractable small-animal model for assessing the requirements for the establishment of latency, as well as reactivation from latency, within the lymphoid compartment. By day 16 postinfection, MHV68 latency in the spleen is found in B cells, dendritic cells, and macrophages. However, as with Epstein-Barr virus, by 3 months postinfection MHV68 latency is predominantly found in isotype-switched memory B cells. The MHV68 M2 gene product is a latency-associated antigen with no discernible homology to any known cellular or viral proteins. However, depending on experimental conditions, the M2 protein has been shown to play a critical role in both the efficient establishment of latency in splenic B cells and reactivation from latently infected splenic B cells. Inspection of the sequence of the M2 protein reveals several hallmarks of a signaling molecule, including multiple PXXP motifs and two potential tyrosine phosphorylation sites. Here, we report the generation of a panel of recombinant MHV68 viruses harboring mutations in the M2 gene that disrupt putative functional motifs. Subsequent analyses of the panel of M2 mutant viruses revealed a functionally important cluster of PXXP motifs in the C-terminal region of M2, which have previously been implicated in binding Vav proteins (P. A. Madureira, P. Matos, I. Soeiro, L. K. Dixon, J. P. Simas, and E. W. Lam, J. Biol. Chem. 280:37310-37318, 2005; L. Rodrigues, M. Pires de Miranda, M. J. Caloca, X. R. Bustelo, and J. P. Simas, J. Virol. 80:6123-6135, 2006). Further characterization of two adjacent PXXP motifs in the C terminus of the M2 protein revealed differences in the functions of these domains in M2-driven expansion of primary murine B cells in culture. Finally, we show that tyrosine residues 120 and 129 play a critical role in both the establishment of splenic latency and reactivation from latency upon explant of splenocytes into tissue culture. Taken together, these analyses will aide future studies for identifying M2 interacting partners and B-cell signaling pathways that are manipulated by the M2 protein.


Sign in / Sign up

Export Citation Format

Share Document