scholarly journals Escape and Compensation from Early HLA-B57-Mediated Cytotoxic T-Lymphocyte Pressure on Human Immunodeficiency Virus Type 1 Gag Alter Capsid Interactions with Cyclophilin A

2007 ◽  
Vol 81 (22) ◽  
pp. 12608-12618 ◽  
Author(s):  
Mark A. Brockman ◽  
Arne Schneidewind ◽  
Matthew Lahaie ◽  
Aaron Schmidt ◽  
Toshiyuki Miura ◽  
...  

ABSTRACT Certain histocompatibility leukocyte antigen (HLA) alleles are associated with improved clinical outcomes for individuals infected with human immunodeficiency virus type 1 (HIV-1), but the mechanisms for their effects remain undefined. An early CD8+ T-cell escape mutation in the dominant HLA-B57-restricted Gag epitope TW10 (TSTLQEQIGW) has been shown to impair HIV-1 replication capacity in vitro. We demonstrate here that this T242N substitution in the capsid protein is associated with upstream mutations at residues H219, I223, and M228 in the cyclophilin A (CypA)-binding loop in B57+ individuals with progressive disease. In an independent cohort of epidemiologically linked transmission pairs, the presence of these substitutions in viruses encoding T242N was associated with significantly higher plasma viremia in donors, further suggesting that these secondary mutations compensated for the replication defect of T242N. Using NL4-3 constructs, we illustrate the ability of these CypA loop changes to partially restore replication of the T242N variant in vitro. Notably, these mutations also enhanced viral resistance to the drug cyclosporine A, indicating a reduced dependence of the compensated virus on CypA that is normally essential for optimal infectivity. Therefore, mutations in TW10 allow HIV-1 to evade a dominant early CD8+ T-cell response, but the benefits of escape are offset by a defect in capsid function. These data suggest that TW10 escape variants undergo a postentry block that is partially overcome by changes in the CypA-binding loop and identify a mechanism for an HIV-1 fitness defect that may contribute to the slower disease progression associated with HLA-B57.


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.



2007 ◽  
Vol 81 (8) ◽  
pp. 3749-3756 ◽  
Author(s):  
Ruifeng Yang ◽  
Christopher Aiken

ABSTRACT The replication of many isolates of human immunodeficiency virus type 1 (HIV-1) is enhanced by binding of the host cell protein cyclophilin A (CypA) to the viral capsid protein (CA). The immunosuppressive drug cyclosporine A (CsA) and its nonimmunosuppressive analogs bind with high affinity to CypA and inhibit HIV-1 replication. Previous studies have identified two mutations, A92E and G94D, in the CypA-binding loop of CA that confer the ability of HIV-1 to replicate in the presence of CsA. Interestingly, CsA stimulates the replication of HIV-1 mutants containing either the A92E or G94D substitution in some human cell lines. Here, we show that substitution of alanine for threonine at position 54 of CA (T54A) also confers HIV-1 resistance to and dependence on CsA. Like the previously identified CsA-resistant/dependent mutants, infection by the T54A mutant was stimulated by CsA in a target cell-specific manner. RNA interference-mediated reduction of CypA expression enhanced the permissiveness of HeLa cells to infection by the T54A mutant. A suppressor mutation, encoding a substitution of threonine for alanine at position 105 of CA (A105T), was identified through adaptation of the T54A mutant virus for growth in CEM cells. A105T rescued the impaired single-cycle infectivity and replication defects of both T54A and A92E mutants. These results indicate that CA determinants outside the CypA-binding loop can modulate the dependence of HIV-1 infection on CypA.



2005 ◽  
Vol 79 (3) ◽  
pp. 1470-1479 ◽  
Author(s):  
Isabel Scholz ◽  
Brian Arvidson ◽  
Doug Huseby ◽  
Eric Barklis

ABSTRACT The N-terminal domains (NTDs) of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein have been modeled to form hexamer rings in the mature cores of virions. In vitro, hexamer ring units organize into either tubes or spheres, in a pH-dependent fashion. To probe factors which might govern hexamer assembly preferences in vivo, we examined the effects of mutations at CA histidine residue 84 (H84), modeled at the outer edges of NTD hexamers, as well as a nearby histidine (H87) in the cyclophilin A (CypA) binding loop. Although mutations at H87 yielded infectious virions, mutations at H84 produced assembly-competent but poorly infectious virions. The H84 mutant viruses incorporated wild-type levels of CypA and viral RNAs and showed nearly normal signals in virus entry assays. However, mutant CA proteins assembled aberrant virus cores, and mutant core fractions retained abnormally high levels of CA but reduced reverse transcriptase activities. Our results suggest that HIV-1 CA residue 84 contributes to a structure which helps control either NTD hexamer assembly or the organization of hexamers into higher-order structures.



2003 ◽  
Vol 77 (7) ◽  
pp. 4431-4434 ◽  
Author(s):  
Mahfuz Khan ◽  
Minerva Garcia-Barrio ◽  
Michael D. Powell

ABSTRACT We have previously shown that virions with nef deleted can be restored to wild-type infectivity by treatment to induce natural endogenous reverse transcription (NERT). Since Nef and cyclophilin A (CyPA) appear to act in similar ways on postentry events, we determined whether NERT treatment would restore infectivity to virions depleted of CyPA. Our results show that the infectivity of virions depleted of CyPA by treatment with cyclosporine A could be restored by NERT treatment, while mutants in the CyPA binding loop of capsid could only be partially restored. These results suggest that CyPA is involved in some aspect of the uncoating process.



2004 ◽  
Vol 78 (22) ◽  
pp. 12638-12646 ◽  
Author(s):  
Eli Boritz ◽  
Brent E. Palmer ◽  
Cara C. Wilson

ABSTRACT Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-γ)-producing CD4+ T cells. Among the 20 viremic, treatment-naïve subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-γ-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.



2004 ◽  
Vol 78 (19) ◽  
pp. 10536-10542 ◽  
Author(s):  
Jean-Michel Fondere ◽  
Gael Petitjean ◽  
Marie-France Huguet ◽  
Sharon Lynn Salhi ◽  
Vincent Baillat ◽  
...  

ABSTRACT In resting CD4+ T lymphocytes harboring human immunodeficiency virus type 1 (HIV-1), replication-competent virus persists in patients responding to highly active antiretroviral therapy (HAART). This small latent reservoir represents between 103 and 107 cells per patient. However, the efficiency of HIV-1 DNA-positive resting CD4+ T cells in converting to HIV-1-antigen-secreting cells (HIV-1-Ag-SCs) after in vitro CD4+-T-cell polyclonal stimulation has not been satisfactorily evaluated. By using an HIV-1-antigen enzyme-linked immunospot assay, 8 HIV-1-Ag-SCs per 106 CD4+ resting T cells were quantified in 25 patients with a plasma viral load of <20 copies/ml, whereas 379 were enumerated in 10 viremic patients. In parallel, 369 and 1,238 copies of HIV-1 DNA per 106 CD4+ T cells were enumerated in the two groups of patients, respectively. Only a minority of latently HIV-1 DNA-infected CD4+ T cells could be stimulated in vitro to become HIV-1-Ag-SCs, particularly in aviremic patients. The difference between the number of HIV-1 immunospots in viremic versus aviremic patients could be explained by HIV-1 unintegrated viral DNA that gave additional HIV-1-Ag-SCs after in vitro CD4+-T-cell polyclonal stimulation. The ELISPOT approach to targeting the HIV-1-Ag-SCs could be a useful method for identifying latently HIV-1-infected CD4+ T cells carrying replication-competent HIV-1 in patients responding to HAART.



1999 ◽  
Vol 73 (9) ◽  
pp. 7842-7847 ◽  
Author(s):  
Nathalie Dejucq ◽  
Graham Simmons ◽  
Paul R. Clapham

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) non-syncytium-inducing (NSI) strains predominantly use the chemokine receptor CCR5, while syncytium-inducing (SI) strains use CXCR4. In vitro, SI isolates infect and replicate in a range of CD4+ CXCR4+ T-cell lines, whereas NSI isolates usually do not. Here we describe three NSI strains that are able to infect two CD4+ T-cell lines, Molt4 and SupT1. For one strain, a variant of JRCSF selected in vitro, replication on Molt4 was previously shown to be conferred by a single amino-acid change in the V1 loop (M.T. Boyd et al., J. Virol. 67:3649–3652, 1993). On CD4+ cell lines expressing different coreceptors, these strains use CCR5 predominantly and do not replicate in CCR5-negative peripheral blood mononuclear cells derived from individuals homozygous for Δ32 CCR5. Furthermore, infection of Molt4 and SupT1 by each of these three strains is potently inhibited by ligands for CCR5, including 2D7, a monoclonal antibody specific for CCR5. CCR5 mRNA was present in both Molt4 and SupT1 by reverse transcription-PCR, although CCR5 protein could not be detected either on the cell surface or in intracellular vesicles. The expanded tropism of the three strains shown here is therefore not due to adaptation to a new coreceptor but due to the capacity to exploit extremely low levels of CCR5 on Molt4 and SupT1 cells. This novel tropism observed for a subset of primary HIV-1 isolates may represent an extended tropism to new CD4+ cell types in vivo.



2008 ◽  
Vol 53 (2) ◽  
pp. 450-457 ◽  
Author(s):  
Jeffrey M. Jacobson ◽  
Daniel R. Kuritzkes ◽  
Eliot Godofsky ◽  
Edwin DeJesus ◽  
Jeffrey A. Larson ◽  
...  

ABSTRACT Ibalizumab (formerly TNX-355) is a humanized monoclonal antibody that binds CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1), and inhibits the viral entry process. A phase lb multidose study of the safety, pharmacokinetics, and antiviral activity of ibalizumab was conducted with 22 HIV-1-infected patients. Nineteen patients were randomized to receive either 10 mg/kg of body weight weekly (arm A) or a 10-mg/kg loading dose followed by 6 mg/kg every 2 weeks (arm B) intravenously for 9 weeks. Three patients were assigned to receive 25 mg/kg every 2 weeks for five doses (arm C). During the study, the patients remained off other antiretrovirals or continued a stable failing regimen. Treatment with ibalizumab resulted in substantial reductions in HIV-1 RNA levels (0.5 to 1.7 log10) in 20 of 22 subjects. In most patients, HIV-1 RNA fell to nadir levels after 1 to 2 weeks of treatment and then returned to baseline despite continued treatment. Baseline viral isolates were susceptible to ibalizumab in vitro, regardless of coreceptor tropism. Emerging resistance to ibalizumab was manifested by reduced maximal percent inhibition in a single-cycle HIV infectivity assay. Resistant isolates remained CD4 dependent and were susceptible to enfuvirtide in vitro. Complete coating of CD4+ T-cell receptors was correlated with serum ibalizumab concentrations. There was no evidence of CD4+ T-cell depletion in ibalizumab-treated patients. Ibalizumab was not immunogenic, and no serious drug-related adverse effects occurred. In conclusion, ibalizumab administered either weekly or biweekly was safe and well tolerated and demonstrated antiviral activity. Further studies with ibalizumab in combination with standard antiretroviral treatments are warranted.



Sign in / Sign up

Export Citation Format

Share Document