scholarly journals Expanded Tropism of Primary Human Immunodeficiency Virus Type 1 R5 Strains to CD4+ T-Cell Lines Determined by the Capacity To Exploit Low Concentrations of CCR5

1999 ◽  
Vol 73 (9) ◽  
pp. 7842-7847 ◽  
Author(s):  
Nathalie Dejucq ◽  
Graham Simmons ◽  
Paul R. Clapham

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) non-syncytium-inducing (NSI) strains predominantly use the chemokine receptor CCR5, while syncytium-inducing (SI) strains use CXCR4. In vitro, SI isolates infect and replicate in a range of CD4+ CXCR4+ T-cell lines, whereas NSI isolates usually do not. Here we describe three NSI strains that are able to infect two CD4+ T-cell lines, Molt4 and SupT1. For one strain, a variant of JRCSF selected in vitro, replication on Molt4 was previously shown to be conferred by a single amino-acid change in the V1 loop (M.T. Boyd et al., J. Virol. 67:3649–3652, 1993). On CD4+ cell lines expressing different coreceptors, these strains use CCR5 predominantly and do not replicate in CCR5-negative peripheral blood mononuclear cells derived from individuals homozygous for Δ32 CCR5. Furthermore, infection of Molt4 and SupT1 by each of these three strains is potently inhibited by ligands for CCR5, including 2D7, a monoclonal antibody specific for CCR5. CCR5 mRNA was present in both Molt4 and SupT1 by reverse transcription-PCR, although CCR5 protein could not be detected either on the cell surface or in intracellular vesicles. The expanded tropism of the three strains shown here is therefore not due to adaptation to a new coreceptor but due to the capacity to exploit extremely low levels of CCR5 on Molt4 and SupT1 cells. This novel tropism observed for a subset of primary HIV-1 isolates may represent an extended tropism to new CD4+ cell types in vivo.

1999 ◽  
Vol 73 (9) ◽  
pp. 7117-7125 ◽  
Author(s):  
Yanjie Yi ◽  
Stuart N. Isaacs ◽  
Darlisha A. Williams ◽  
Ian Frank ◽  
Dominique Schols ◽  
...  

ABSTRACT Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).


2003 ◽  
Vol 77 (1) ◽  
pp. 291-300 ◽  
Author(s):  
L. Musey ◽  
Y. Ding ◽  
J. Cao ◽  
J. Lee ◽  
C. Galloway ◽  
...  

ABSTRACT Induction of adaptive immunity to human immunodeficiency virus type 1 (HIV-1) at the mucosal site of transmission is poorly understood but crucial in devising strategies to control and prevent infection. To gain further understanding of HIV-1-specific T-cell mucosal immunity, we established HIV-1-specific CD8+ cytotoxic T-lymphocyte (CTL) cell lines and clones from the blood, cervix, rectum, and semen of 12 HIV-1-infected individuals and compared their specificities, cytolytic function, and T-cell receptor (TCR) clonotypes. Blood and mucosal CD8+ CTL had common HIV-1 epitope specificities and major histocompatibility complex restriction patterns. Moreover, both systemic and mucosal CTL lysed targets with similar efficiency, primarily through the perforin-dependent pathway in in vitro studies. Sequence analysis of the TCRβ VDJ region revealed in some cases identical HIV-1-specific CTL clones in different compartments in the same HIV-1-infected individual. These results clearly establish that a subset of blood and mucosal HIV-1-specific CTL can have a common origin and can traffic between anatomically distinct compartments. Thus, these effectors can provide immune surveillance at the mucosa, where rapid responses are needed to contain HIV-1 infection.


2004 ◽  
Vol 78 (22) ◽  
pp. 12638-12646 ◽  
Author(s):  
Eli Boritz ◽  
Brent E. Palmer ◽  
Cara C. Wilson

ABSTRACT Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-γ)-producing CD4+ T cells. Among the 20 viremic, treatment-naïve subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-γ-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.


2004 ◽  
Vol 78 (19) ◽  
pp. 10536-10542 ◽  
Author(s):  
Jean-Michel Fondere ◽  
Gael Petitjean ◽  
Marie-France Huguet ◽  
Sharon Lynn Salhi ◽  
Vincent Baillat ◽  
...  

ABSTRACT In resting CD4+ T lymphocytes harboring human immunodeficiency virus type 1 (HIV-1), replication-competent virus persists in patients responding to highly active antiretroviral therapy (HAART). This small latent reservoir represents between 103 and 107 cells per patient. However, the efficiency of HIV-1 DNA-positive resting CD4+ T cells in converting to HIV-1-antigen-secreting cells (HIV-1-Ag-SCs) after in vitro CD4+-T-cell polyclonal stimulation has not been satisfactorily evaluated. By using an HIV-1-antigen enzyme-linked immunospot assay, 8 HIV-1-Ag-SCs per 106 CD4+ resting T cells were quantified in 25 patients with a plasma viral load of <20 copies/ml, whereas 379 were enumerated in 10 viremic patients. In parallel, 369 and 1,238 copies of HIV-1 DNA per 106 CD4+ T cells were enumerated in the two groups of patients, respectively. Only a minority of latently HIV-1 DNA-infected CD4+ T cells could be stimulated in vitro to become HIV-1-Ag-SCs, particularly in aviremic patients. The difference between the number of HIV-1 immunospots in viremic versus aviremic patients could be explained by HIV-1 unintegrated viral DNA that gave additional HIV-1-Ag-SCs after in vitro CD4+-T-cell polyclonal stimulation. The ELISPOT approach to targeting the HIV-1-Ag-SCs could be a useful method for identifying latently HIV-1-infected CD4+ T cells carrying replication-competent HIV-1 in patients responding to HAART.


2003 ◽  
Vol 77 (2) ◽  
pp. 1392-1402 ◽  
Author(s):  
Angélique B. van 't Wout ◽  
Ginger K. Lehrman ◽  
Svetlana A. Mikheeva ◽  
Gemma C. O'Keeffe ◽  
Michael G. Katze ◽  
...  

ABSTRACT The expression levels of ∼4,600 cellular RNA transcripts were assessed in CD4+-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1BRU) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1BRU infection, consistent with the G2 arrest of HIV-1-infected cells induced by Vpr. These included genes involved in cell division and transcription, a family of DEAD-box proteins (RNA helicases), and all genes involved in translation and splicing. However, the overall level of cell activation and signaling was increased in infected cells, consistent with strong virus production. These included a subgroup of transcription factors, including EGR1 and JUN, suggesting they play a specific role in the HIV-1 life cycle. Some regulatory changes were cell line specific; however, the majority, including enzymes involved in cholesterol biosynthesis, of changes were regulated in most infected cell lines. Compendium analysis comparing gene expression profiles of our HIV-1 infection experiments to those of cells exposed to heat shock, interferon, or influenza A virus indicated that HIV-1 infection largely induced specific changes rather than simply activating stress response or cytokine response pathways. Thus, microarray analysis confirmed several known HIV-1 host cell interactions and permitted identification of specific cellular pathways not previously implicated in HIV-1 infection. Continuing analyses are expected to suggest strategies for impacting HIV-1 replication in vivo by targeting these pathways.


Sign in / Sign up

Export Citation Format

Share Document