scholarly journals Attenuation of Recombinant Vesicular Stomatitis Virus-Human Immunodeficiency Virus Type 1 Vaccine Vectors by Gene Translocations and G Gene Truncation Reduces Neurovirulence and Enhances Immunogenicity in Mice

2007 ◽  
Vol 82 (1) ◽  
pp. 207-219 ◽  
Author(s):  
David Cooper ◽  
Kevin J. Wright ◽  
Priscilla C. Calderon ◽  
Min Guo ◽  
Farooq Nasar ◽  
...  

ABSTRACT Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made.

1999 ◽  
Vol 80 (11) ◽  
pp. 2945-2949 ◽  
Author(s):  
Hirofumi Akari ◽  
Tsuneo Uchiyama ◽  
Tomoharu Fukumori ◽  
Shinya Iida ◽  
A. Hajime Koyama ◽  
...  

The functions of Vif and Nef in human immunodeficiency virus type 1 (HIV-1) infection have some similarities: Vif- and Nef-dependent enhancement of HIV-1 replication is cell type-specific, and defective mutations in these genes result in restricted proviral DNA synthesis in infected cells. It has recently been shown that pseudotyping HIV-1 by the envelope glycoprotein of vesicular stomatitis virus (VSV-G) targets HIV-1 entry to an endocytic pathway and suppresses the requirement of Nef for virus infectivity. In this study, we examined whether VSV-G pseudotyping suppresses the requirement of Vif for HIV-1 infectivity. It was found that pseudotyping HIV-1 by VSV-G did not compensate for the Vif function. Together with the findings that Vif does not influence virus binding/entry and virion incorporation of Env, it is concluded that Vif enhances HIV-1 infectivity at the post-entry step(s) independently of the Env function by a different mechanism to that of Nef.


2009 ◽  
Vol 90 (5) ◽  
pp. 1135-1140 ◽  
Author(s):  
Kunyu Wu ◽  
Gyoung Nyoun Kim ◽  
C. Yong Kang

The Indiana serotype of vesicular stomatitis virus (VSVIND), but not the New Jersey serotype (VSVNJ), has been widely used as a gene expression vector. In terms of prime–boost-based vaccine strategies, it would be desirable to use two different VSV serotypes to avoid immunity against the priming viral vector. Here, we report that we have applied the VSVNJ vector system for expression of the env gene of human immunodeficiency virus type 1 (HIV-1). The HIV-1 env gene was inserted into the VSVNJ vector system at two different sites: between the P and M genes (NP-gp160-MGL) and between the G and L genes (NPMG-gp160-L). The HIV-1 env gene product, gp160, was efficiently expressed and processed in cells infected with either of these two recombinant VSV–HIV-1gp160 viruses. In this study, we have investigated the applicability of the VSVNJ vector system for foreign gene expression.


2005 ◽  
Vol 79 (23) ◽  
pp. 14498-14506 ◽  
Author(s):  
Ayna Alfadhli ◽  
Tenzin Choesang Dhenub ◽  
Amelia Still ◽  
Eric Barklis

ABSTRACT The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.


2008 ◽  
Vol 82 (20) ◽  
pp. 9937-9950 ◽  
Author(s):  
Nathaniel W. Martinez ◽  
Xiaoxiao Xue ◽  
Reem G. Berro ◽  
Geri Kreitzer ◽  
Marilyn D. Resh

ABSTRACT Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.


2005 ◽  
Vol 79 (8) ◽  
pp. 4927-4935 ◽  
Author(s):  
B. Poon ◽  
J. T. Safrit ◽  
H. McClure ◽  
C. Kitchen ◽  
J. F. Hsu ◽  
...  

ABSTRACT The lack of success of subunit human immunodeficiency virus type 1 (HIV-1) vaccines to date suggests that multiple components or a complex virion structure may be required. We previously demonstrated retention of the major conformational epitopes of HIV-1 envelope following thermal treatment of virions. Moreover, antibody binding to some of these epitopes was significantly enhanced following thermal treatment. These included the neutralizing epitopes identified by monoclonal antibodies 1b12, 2G12, and 17b, some of which have been postulated to be partially occluded or cryptic in native virions. Based upon this finding, we hypothesized that a killed HIV vaccine could be derived to elicit protective humoral immune responses. Shedding of HIV-1 envelope has been described for some strains of HIV-1 and has been cited as one of the major impediments to developing an inactivated HIV-1 vaccine. In the present study, we demonstrate that treatment of virions with low-dose formaldehyde prior to thermal inactivation retains the association of viral envelope with virions. Moreover, mice and nonhuman primates vaccinated with formaldehyde-treated, thermally inactivated virions produce antibodies capable of neutralizing heterologous strains of HIV in peripheral blood mononuclear cell-, MAGI cell-, and U87-based infectivity assays. These data indicate that it is possible to create an immunogen by using formaldehyde-treated, thermally inactivated HIV-1 virions to induce neutralizing antibodies. These findings have broad implications for vaccine development.


Sign in / Sign up

Export Citation Format

Share Document