scholarly journals Interaction of ICP34.5 with Beclin 1 Modulates Herpes Simplex Virus Type 1 Pathogenesis through Control of CD4+ T-Cell Responses

2009 ◽  
Vol 83 (23) ◽  
pp. 12164-12171 ◽  
Author(s):  
David A. Leib ◽  
Diane E. Alexander ◽  
Douglas Cox ◽  
Jiyi Yin ◽  
Thomas A. Ferguson

ABSTRACT Autophagy is an important component of host innate and adaptive immunity to viruses. It is critical for the degradation of intracellular pathogens and for promoting antigen presentation. Herpes simplex virus type 1 (HSV-1) infection induces an autophagy response, but this response is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. This is due, in part, to its interaction with the essential autophagy protein Beclin 1 (Atg6) via the Beclin-binding domain (BBD) of ICP34.5. Using a recombinant virus lacking the BBD, we examined pathogenesis and immune responses using mouse models of infection. The BBD-deficient virus (Δ68H) replicated equivalently to its marker-rescued counterpart (Δ68HR) at early times but was cleared more rapidly than Δ68HR from all tissues at late times following corneal infection. In addition, the infection of the cornea with Δ68H induced less ocular disease than Δ68HR. These results suggested that Δ68H was attenuated due to its failure to control adaptive rather than innate immunity. In support of this idea, Δ68H stimulated a significantly stronger CD4+ T-cell-mediated delayed-type hypersensitivity response and resulted in significantly more production of gamma interferon and interleukin-2 from HSV-specific CD4+ T cells than Δ68HR. Taken together, these data suggest a role for the BBD of ICP34.5 in precluding autophagy-mediated class II antigen presentation, thereby enhancing the virulence and pathogenesis of HSV-1.

1997 ◽  
Vol 185 (11) ◽  
pp. 1969-1975 ◽  
Author(s):  
Roger Sciammas ◽  
P. Kodukula ◽  
Q. Tang ◽  
R.L. Hendricks ◽  
J.A. Bluestone

Increased numbers of T cell receptor (TCR)-γ/δ cells have been observed in animal models of influenza and sendai virus infections, as well as in patients infected with human immunodeficiency virus and herpes simplex virus type 1 (HSV-1). However, a direct role for TCR-γ/δ cells in protective immunity for pathogenic viral infection has not been demonstrated. To define the role of TCR-γ/δ cells in anti–HSV-1 immunity, TCR-α−/− mice treated with anti– TCR-γ/δ monoclonal antibodies or TCR-γ/δ × TCR-α/β double-deficient mice were infected with HSV-1 by footpad or ocular routes of infection. In both models of HSV-1 infection, TCR-γ/δ cells limited severe HSV-1–induced epithelial lesions and greatly reduced mortality by preventing the development of lethal viral encephalitis. The observed protection resulted from TCR-γ/δ cell–mediated arrest of both viral replication and neurovirulence. The demonstration that TCR-γ/δ cells play an important protective role in murine HSV-1 infections supports their potential contribution to the immune responses in human HSV-1 infection. Thus, this study demonstrates that TCR-γ/δ cells may play an important regulatory role in human HSV-1 infections.


2006 ◽  
Vol 80 (8) ◽  
pp. 3985-3993 ◽  
Author(s):  
Sadik H. Kassim ◽  
Naveen K. Rajasagi ◽  
Xiangyi Zhao ◽  
Robert Chervenak ◽  
Stephen R. Jennings

ABSTRACT The precise role of each of the seven individual CD11c+ dendritic cell subsets (DCs) identified to date in the response to viral infections is not known. DCs serve as critical links between the innate and adaptive immune responses against many pathogens, including herpes simplex virus type 1 (HSV-1). The role of DCs as mediators of resistance to HSV-1 infection was investigated using CD11c-diphtheria toxin (DT) receptor-green fluorescent protein transgenic mice, in which DCs can be transiently depleted in vivo by treatment with low doses of DT. We show that ablation of DCs led to enhanced susceptibility to HSV-1 infection in the highly resistant C57BL/6 mouse strain. Specifically, we showed that the depletion of DCs led to increased viral spread into the nervous system, resulting in an increased rate of morbidity and mortality. Furthermore, we showed that ablation of DCs impaired the optimal activation of NK cells and CD4+ and CD8+ T cells in response to HSV-1. These data demonstrated that DCs were essential not only in the optimal activation of the acquired T-cell response to HSV-1 but also that DCs were crucial for innate resistance to HSV-1 infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Eduardo I. Tognarelli ◽  
Angello Retamal-Díaz ◽  
Mónica A. Farías ◽  
Luisa F. Duarte ◽  
Tomás F. Palomino ◽  
...  

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly prevalent in the human population. These viruses persist in the host, eliciting either symptomatic or asymptomatic infections that may occur sporadically or in a recurrent manner through viral reactivations. Clinical manifestations due to symptomatic infection may be mild such as orofacial lesions, but may also translate into more severe diseases, such as ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of herpes simplex viruses (HSVs) is that they have evolved molecular determinants that hamper numerous components of the host’s antiviral innate and adaptive immune system. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection. Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring Enzyme 1 alpha (IRE-1α). Here, we sought to evaluate if the activation of the IRE-1α pathway in DCs upon HSV infection may be related to impaired DC function after infection with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease activity of IRE-1α in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in these cells and enhanced their capacity to migrate to lymph nodes and activate virus-specific CD4+ and CD8+ T cells. These findings suggest that the activation of the IRE-1α-dependent UPR pathway in HSV-infected DCs may play a significant role in the negative effects that these viruses exert over these cells and that the modulation of this signaling pathway may be relevant for enhancing the function of DCs upon infection with HSVs.


2010 ◽  
Vol 84 (23) ◽  
pp. 12315-12324 ◽  
Author(s):  
Sariah J. Allen ◽  
Kevin R. Mott ◽  
Mandana Zandian ◽  
Homayon Ghiasi

ABSTRACT We have shown previously that immunization with herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) exacerbated corneal scarring (CS) in ocularly infected mice. In this study, we investigated whether higher levels of CS were correlated with higher levels of latency and T cell exhaustion in gK-immunized mice. BALB/c mice were vaccinated with baculovirus-expressed gK or gD or mock immunized. Twenty-one days after the third immunization, mice were ocularly infected with 2 × 104 PFU/eye of virulent HSV-1 strain McKrae. On day 5 postinfection, virus replication in the eye was measured, and on day 30 postinfection, infiltration of the trigeminal ganglia (TG) by CD4, CD8, programmed death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) was monitored by immunohistochemistry and quantitative real-time PCR (qRT-PCR). This study demonstrated that higher levels of CS were correlated with higher levels of latency, and this was associated with the presence of significantly higher numbers of CD4+PD-1+ and CD8+PD-1+ cells in the TG of the gK-immunized group than in both the gD- and mock-immunized groups. Levels of exhaustion associated with Tim-3 were the same among gK- and mock-vaccinated groups but higher than levels in the gD-vaccinated group. In this study, we have shown for the first time that both PD-1 and Tim-3 contribute to T cell exhaustion and an increase of latency in the TG of latently infected mice.


2005 ◽  
Vol 79 (24) ◽  
pp. 15289-15301 ◽  
Author(s):  
Xiuli Zhang ◽  
Annie Issagholian ◽  
Eric A. Berg ◽  
Jordan B. Fishman ◽  
Anthony B. Nesburn ◽  
...  

ABSTRACT Molecularly defined vaccine formulations capable of inducing antiviral CD8+ T-cell-specific immunity in a manner compatible with human delivery are limited. Few molecules achieve this target without the support of an appropriate immunological adjuvant. In this study, we investigate the potential of totally synthetic palmitoyl-tailed helper-cytotoxic-T-lymphocyte chimeric epitopes (Th-CTL chimeric lipopeptides) to induce herpes simplex virus type 1 (HSV-1)-specific CD8+ T-cell responses. As a model antigen, the HSV-1 glycoprotein B (498-505) (gB498-505) CD8+ CTL epitope was synthesized in line with the Pan DR peptide (PADRE), a universal CD4+ Th epitope. The peptide backbone, composed solely of both epitopes, was extended by N-terminal attachment of one (PAM-Th-CTL), two [(PAM)2-Th-CTL], or three [(PAM)3-Th-CTL] palmitoyl lysines and delivered to H2b mice in adjuvant-free saline. Potent HSV-1 gB498-505-specific antiviral CD8+ T-cell effector type 1 responses were induced by each of the palmitoyl-tailed Th-CTL chimeric epitopes, irrespective of the number of lipid moieties. The palmitoyl-tailed Th-CTL chimeric epitopes provoked cell surface expression of major histocompatibility complex and costimulatory molecules and production of interleukin-12 and tumor necrosis factor alpha proinflammatory cytokines by immature dendritic cells. Following ocular HSV-1 challenge, palmitoyl-tailed Th-CTL-immunized mice exhibited a decrease of virus replication in the eye and in the local trigeminal ganglion and reduced herpetic blepharitis and corneal scarring. The rational of the molecularly defined vaccine approach presented in this study may be applied to ocular herpes and other viral infections in humans, providing steps are taken to include appropriate Th and CTL epitopes and lipid groups.


Cytotherapy ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Chun K.K. Ma ◽  
Leighton Clancy ◽  
Shivashni Deo ◽  
Emily Blyth ◽  
Kenneth P. Micklethwaite ◽  
...  

2009 ◽  
Vol 83 (8) ◽  
pp. 3696-3703 ◽  
Author(s):  
Katharina Hüfner ◽  
Anja Horn ◽  
Tobias Derfuss ◽  
Christine Glon ◽  
Inga Sinicina ◽  
...  

ABSTRACT Following primary infection of the mouth, herpes simplex virus type 1 (HSV-1) travels retrogradely along the maxillary (V2) or mandibular (V3) nerve to the trigeminal ganglion (TG), where it establishes lifelong latency. Symptomatic HSV-1 reactivations frequently manifest as herpes labialis, while ocular HSV-1 disease is rare. We investigated whether these clinical observations are mirrored by the distribution of latent HSV-1 as well as cytotoxic T-cell infiltration around the nerve cell bodies and in the nerve fibers. The three divisions of the TG were separated by using neurofilament staining and carbocyanine dye Di-I tracing and then screened by in situ hybridization for the presence of HSV-1 latency-associated transcript (LAT). The T-cell distribution and the pattern of cytolytic molecule expression were evaluated by immunohistochemistry. The Di-I-labeled neurons were largely confined to the nerve entry zone of the traced nerve branches. Very few Di-I-labeled neurons were found in adjacent divisions due to traversing fiber bundles. LAT was abundant in the V2 and V3 divisions of all TG but was scarce or totally absent in the ophthalmic (V1) division. CD8+ T cells were found in all three divisions of the TG and in the respective nerves, clearly clustering in V2 and V3, which is indicative of a chronic inflammation. Only T cells surrounding neurons in the V2 and V3 ganglionic divisions expressed granzyme B. In conclusion, the large accumulation of LAT and cytotoxic T cells in the V2 and V3 but not in the V1 division of the TG reflects the sites supplied by the sensory fibers and the clinical reactivation patterns.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


Sign in / Sign up

Export Citation Format

Share Document