scholarly journals Virus-Specific Cytolytic Antibodies to Nonstructural Protein 1 of Japanese Encephalitis Virus Effect Reduction of Virus Output from Infected Cells

2009 ◽  
Vol 83 (10) ◽  
pp. 4766-4777 ◽  
Author(s):  
Venkatramana D. Krishna ◽  
Manjuladevi Rangappa ◽  
Vijaya Satchidanandam

ABSTRACT We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.

2014 ◽  
Vol 53 (2) ◽  
pp. 557-566 ◽  
Author(s):  
Day-Yu Chao ◽  
Jedhan Ucat Galula ◽  
Wen-Fan Shen ◽  
Brent S. Davis ◽  
Gwong-Jen J. Chang

IgM antibody- and IgG antibody-capture enzyme-linked immunosorbent assays (MAC/GAC-ELISAs) targeted at envelope protein (E) of dengue viruses (DENV), West Nile virus, and Japanese encephalitis virus (JEV) are widely used as serodiagnostic tests for presumptive confirmation of viral infection. Antibodies directed against the flavivirus nonstructural protein 1 (NS1) have been proposed as serological markers of natural infections among vaccinated populations. The aim of the current study is to optimize an IgM and IgG antibody-capture ELISA (MAC/GAC-ELISA) to detect anti-NS1 antibodies and compare it with anti-E MAC/GAC-ELISA. Plasmids to express premembrane/envelope (prM/E) or NS1 proteins of six medically important flaviviruses, including dengue viruses (DENV-1 to DENV-4), West Nile virus (WNV), and Japanese encephalitis virus (JEV), were constructed. These plasmids were used for the production of prM/E-containing virus-like particles (VLPs) and secreted NS1 (sNS1) from COS-1 cells. Archived clinical specimens from patients with confirmed DENV, JEV, and WNV infections, along with naive sera, were subjected to NS1-MAC/GAC-ELISAs before or after depletion of anti-prM/E antibodies by preabsorption with or without VLPs. Human serum specimens from previously confirmed DENV infections showed significantly enhanced positive-to-negative (P/N) ratios for NS1-MAC/GAC-ELISAs after the depletion of anti-prM/E antibodies. No statistical differences in sensitivities and specificities were found between the newly developed NS1- and VLP-MAC/GAC-ELISAs. Further application of the assays to WNV- and JEV-infected serum panels showed similar results. A novel approach to perform MAC/GAC-ELISAs for NS1 antibody detection was successfully developed with great potential to differentiate antibodies elicited by the tetravalent chimeric yellow fever-17D/dengue vaccine or DENV infection.


2007 ◽  
Vol 14 (8) ◽  
pp. 1024-1031 ◽  
Author(s):  
Yoko Kitai ◽  
Mizue Shoda ◽  
Takashi Kondo ◽  
Eiji Konishi

ABSTRACT West Nile virus (WNV) is now widely distributed worldwide, except in most areas of Asia where Japanese encephalitis virus (JEV) is distributed. Considering the movement and migration of reservoir birds, there is concern that WNV may be introduced in Asian countries. Although manuals and guidelines for serological tests have been created in Japan in preparedness for the introduction of WNV, differential diagnosis between WNV and JEV may be complicated by antigenic cross-reactivities between these flaviviruses. Here, we generated a monoclonal antibody specific for the nonstructural protein 1 (NS1) of WNV and established an epitope-blocking enzyme-linked immunosorbent assay that can differentiate WNV from JEV infections in horse sera. Under conditions well suited for our assay system, samples collected from 95 horses in Japan (regarded as negative for WNV antibodies), including those collected from horses naturally infected with JEV, showed a mean inhibition value of 8.2% and a standard deviation (SD) of 6.5%. However, inhibition values obtained with serum used as a positive control (obtained after 28 days from a horse experimentally infected with WNV) in nine separate experiments showed a mean of 54.4% and an SD of 7.1%. We tentatively determined 27.6% (mean + 3 × SD obtained with 95 negative samples) as the cutoff value to differentiate positive from negative samples. Under this criterion, two horses experimentally infected with WNV were diagnosed as positive at 12 and 14 days, respectively, after infection.


2015 ◽  
Vol 90 (3) ◽  
pp. 1178-1189 ◽  
Author(s):  
Li-Chen Yen ◽  
Jia-Teh Liao ◽  
Hwei-Jen Lee ◽  
Wei-Yuan Chou ◽  
Chun-Wei Chen ◽  
...  

ABSTRACTNS1 is the only nonstructural protein that enters the lumen of the endoplasmic reticulum (ER), where NS1 is glycosylated, forms a dimer, and is subsequently secreted during flavivirus replication as dimers or hexamers, which appear to be highly immunogenic to the infected host, as protective immunity can be elicited against homologous flavivirus infections. Here, by using atrans-complementation assay, we identified the C-terminal end of NS1 derived from Japanese encephalitis virus (JEV), which was more flexible than other regions in terms of housing foreign epitopes without a significant impact on virus replication. This mapped flexible region is located in the conserved tip of the core β-ladder domain of the multimeric NS1 structure and is also known to contain certain linear epitopes, readily triggering specific antibody responses from the host. Despite becoming attenuated, recombinant JEV with insertion of a neutralizing epitope derived from enterovirus 71 (EV71) into the C-terminal end of NS1 not only could be normally released from infected cells, but also induced dual protective immunity for the host to counteract lethal challenge with either JEV or EV71 in neonatal mice. These results indicated that the secreted multimeric NS1 of flaviviruses may serve as a natural protein carrier to render epitopes of interest more immunogenic in the C terminus of the core β-ladder domain.IMPORTANCEThe positive-sense RNA genomes of mosquito-borne flaviviruses appear to be flexible in terms of accommodating extra insertions of short heterologous antigens into their virus genes. Here, we illustrate that the newly identified C terminus of the core β-ladder domain in NS1 could be readily inserted into entities such as EV71 epitopes, and the resulting NS1-epitope fusion proteins appeared to maintain normal virus replication, secretion ability, and multimeric formation from infected cells. Nonetheless, such an insertion attenuated the recombinant JEV in mice, despite having retained the brain replication ability observed in wild-type JEV. Mother dams immunized with recombinant JEV expressing EV71 epitope-NS1 fused proteins elicited neutralizing antibodies that protected the newborn mice against lethal EV71 challenge. Together, our results implied a potential application of JEV NS1 as a viral carrier protein to express a heterologous epitope to stimulate dual/multiple protective immunity concurrently against several pathogens.


2012 ◽  
Vol 19 (11) ◽  
pp. 1853-1858 ◽  
Author(s):  
Jiro Hirota ◽  
Shinya Shimizu ◽  
Tomoyuki Shibahara ◽  
Takashi Isobe ◽  
Manabu Yamada ◽  
...  

ABSTRACTWest Nile virus (WNV) is endemic throughout Africa, Eurasia, America, and Australia and has important implications for avian, horse, and human health. In these regions, dead birds are monitored for the presence of WNV through immunohistochemistry (IHC) and PCR. However, a number of the tools for IHC are inadequate owing to their cross-reactivity to other Japanese encephalitis serogroup viruses. Here we have established eight monoclonal antibodies (MAbs) to WNV. Four of them bound to the envelope protein, three of them bound to nonstructural protein 1 (NS1), and one bound to precursor membrane protein (prM), as shown by Western blot analysis. The anti-NS1 MAbs and the anti-prM MAb did not cross-react with Japanese encephalitis virus (JEV), Murray valley encephalitis virus, or St. Louis encephalitis virus in an indirect enzyme-linked immunosorbent assay. One NS1-specific MAb, SHW-32B1, and the previously reported NS1-specific MAb, SHW-7A11, were shown by IHC to specifically detect the cytoplasm of degenerated cells in the heart and brain of a WNV-infected goose. Neither of these MAbs were shown by IHC to cross-react with degenerated cells in the brain of a JEV-infected pig. These MAbs are the first reported anti-NS1 MAbs that can be used for WNV-specific IHC using formalin-fixed, paraffin-embedded sections. They may be useful for WNV research and surveillance.


2010 ◽  
Vol 17 (5) ◽  
pp. 875-878 ◽  
Author(s):  
Yoko Kitai ◽  
Takashi Kondo ◽  
Eiji Konishi

ABSTRACT A complement-dependent cytotoxicity (CDC) assay was established to measure antibodies to the West Nile virus (WNV) nonstructural protein 1 (NS1) in horses. Sera collected from a WNV-infected horse mediated lysis of WNV NS1-expressing cells in a dose-dependent manner at higher percentages than sera from a Japanese encephalitis virus (JEV)-infected horse. The percentages of specific lysis for sera diluted 1:10 to 1:80 were <19.8% (assay cutoff) for almost all of the 100 JEV-infected or uninfected horses tested, in contrast to 55 to 76% in WNV-infected horses. Experimental infection revealed that horses became anti-WNV NS1 antibody positive 10 days after WNV infection. This study demonstrated the utility of this assay for differentiating WNV from JEV infections in horses.


Sign in / Sign up

Export Citation Format

Share Document