scholarly journals Translation Control by Protein Kinase R Restricts Minute Virus of Mice Infection: Role in Parvovirus Oncolysis

2010 ◽  
Vol 84 (10) ◽  
pp. 5043-5051 ◽  
Author(s):  
Iván Ventoso ◽  
Juan J. Berlanga ◽  
José M. Almendral

ABSTRACT The relevance of translational control in the gene expression and oncotropism of the autonomous parvoviruses was investigated with MVMp, the prototype strain of minute virus of mice (MVM), infecting normal and transformed rodent and human cells of different tissue origins. Mouse embryo fibroblasts (MEFs) and NIH 3T3 fibroblasts were resistant to MVMp infection, but 3T3 fibroblasts derived from double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) knockout mice (PKRo/o) behaved in a manner that was highly permissive to productive MVMp replication. NIH 3T3 resistance correlated with significant phosphorylation of eukaryotic translation initiation factor 2 (eIF2) occurring at early time points after infection. Permissive PKRo/o cells were converted to MVMp-restrictive cells after reintroduction of the PKR gene by transfection. Conversely, regulated expression of the vaccinia virus E3 protein, a PKR inhibitor, in MEFs prevented eIF2α phosphorylation and increased MVMp protein synthesis. I n vitro-synthesized genome-length R1 mRNA of MVMp was a potent activator of PKR. Virus-resistant primary MEFs and NIH 3T3 cells responded to MVMp infection with significant increases in eIF2α phosphorylation. In contrast, virus-permissive mouse (PKRo/o, BHK21, and A9) and human transformed (NB324K fibroblast, U373 glioma, and HepG2 hepatoma) cells consistently showed no significant increase in the level of eIF2α phosphorylation following MVMp infection. The synthesis of the viral NS1 protein was inversely correlated with the steady-state PKR levels. Our results show that the PKR-mediated antiviral response is an important mechanism for control of productive MVMp infection, and its impairment in human transformed cells allowed efficient MVMp gene expression. PKR translational control may therefore contribute to the oncolysis of MVMp and other autonomous parvoviruses.

2008 ◽  
Vol 83 (5) ◽  
pp. 2298-2309 ◽  
Author(s):  
Verena Krähling ◽  
David A. Stein ◽  
Martin Spiegel ◽  
Friedemann Weber ◽  
Elke Mühlberger

ABSTRACT In this study, infection of 293/ACE2 cells with severe acute respiratory syndrome coronavirus (SARS-CoV) activated several apoptosis-associated events, namely, cleavage of caspase-3, caspase-8, and poly(ADP-ribose) polymerase 1 (PARP), and chromatin condensation and the phosphorylation and hence inactivation of the eukaryotic translation initiation factor 2α (eIF2α). In addition, two of the three cellular eIF2α kinases known to be virus induced, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), were activated by SARS-CoV. The third kinase, general control nonderepressible-2 kinase (GCN2), was not activated, but late in infection the level of GCN2 protein was significantly reduced. Reverse transcription-PCR analyses revealed that the reduction of GCN2 protein was not due to decreased transcription or stability of GCN2 mRNA. The specific reduction of PKR protein expression by antisense peptide-conjugated phosphorodiamidate morpholino oligomers strongly reduced cleavage of PARP in infected cells. Surprisingly, the knockdown of PKR neither enhanced SARS-CoV replication nor abrogated SARS-CoV-induced eIF2α phosphorylation. Pretreatment of cells with beta interferon prior to SARS-CoV infection led to a significant decrease in PERK activation, eIF2α phosphorylation, and SARS-CoV replication. The various effects of beta interferon treatment were found to function independently on the expression of PKR. Our results show that SARS-CoV infection activates PKR and PERK, leading to sustained eIF2α phosphorylation. However, virus replication was not impaired by these events, suggesting that SARS-CoV possesses a mechanism to overcome the inhibitory effects of phosphorylated eIF2α on viral mRNA translation. Furthermore, our data suggest that viral activation of PKR can lead to apoptosis via a pathway that is independent of eIF2α phosphorylation.


2021 ◽  
Vol 13 ◽  
Author(s):  
Nicolás W. Martinez ◽  
Felipe E. Gómez ◽  
Soledad Matus

There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.


1986 ◽  
Vol 6 (6) ◽  
pp. 2253-2256 ◽  
Author(s):  
H A Young ◽  
L Varesio ◽  
P Hwu

Human gamma interferon genomic DNA was introduced into NIH 3T3 fibroblasts by calcium phosphate precipitation and was not expressed in these cells at the cytoplasmic mRNA or protein level. Treatment of the transfected cells with cycloheximide (1 microgram/ml) induced the accumulation of cytoplasmic gamma interferon mRNA and biologically active human gamma interferon. Analysis of the nuclear enriched RNA from untreated cells indicated that human gamma interferon mRNA was present, suggesting that cycloheximide may act by inhibiting a specific nuclease or may enhance the processing or transport of the RNA from the nucleus to the cytoplasm.


Cell ◽  
1988 ◽  
Vol 52 (3) ◽  
pp. 447-458 ◽  
Author(s):  
Derek A. Persons ◽  
William O. Wilkison ◽  
Robert M. Bell ◽  
Olivera J. Finn

2002 ◽  
Vol 397 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Gyorgy Petrovics ◽  
Terry Bird ◽  
Csaba Lehel ◽  
Tamas Oravecz ◽  
Wayne B. Anderson

1994 ◽  
Vol 298 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Z Kiss

Protein kinase C (PKC), an enzyme which is believed to mediate the stimulatory effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on phospholipase D (PLD) activity, has a zinc-dependent structure required for phorbol ester binding. Accordingly, zinc or zinc chelators would be expected to promote or inhibit, respectively, the stimulatory effects of PMA on PLD-mediated phospholipid hydrolysis. Instead, treatment of [14C]choline- and [14C]ethanolamine-labelled NIH 3T3 fibroblasts with the high-affinity zinc chelator 1,10-phenanthroline (0.2-1 mM) for 20-30 min was found to enhance the stimulatory effects of PMA on PLD-mediated hydrolysis of phosphatidylcholine and phosphatidylethanolamine. In [14C]palmitic acid-labelled fibroblasts, in the presence of ethanol, phenanthroline also enhanced the stimulatory effect of PMA on the synthesis of phosphatidylethanol, a marker of PLD activity. Addition of zinc (250 microM) to phenanthroline-treated fibroblasts reversed the stimulatory effects of the chelator. The potentiating effects of phenanthroline were also partially reversed by cadmium, whereas iron, lead, copper, magnesium and calcium were without effects. Of the other activators of PLD tested, phenanthroline also enhanced the stimulatory effects of platelet-derived growth factor and staurosporine, but not that of sphingosine and H2O2, on the hydrolysis of both phospholipids. These results suggest that regulation of PLD by PKC activators and staurosporine involves a common intermediate step, which is inhibited by a chelatable cellular pool of zinc.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuanzhi Liu ◽  
Mingshu Wang ◽  
Anchun Cheng ◽  
Qiao Yang ◽  
Ying Wu ◽  
...  

Abstract Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.


2015 ◽  
Vol 35 (16) ◽  
pp. 2761-2770 ◽  
Author(s):  
Jae-Seon So ◽  
Sungyun Cho ◽  
Sang-Hyun Min ◽  
Scot R. Kimball ◽  
Ann-Hwee Lee

The unfolded protein response (UPR) regulates endoplasmic reticulum (ER) homeostasis and protects cells from ER stress. IRE1α is a central regulator of the UPR that activates the transcription factor XBP1s through an unconventional splicing mechanism using its endoribonuclease activity. IRE1α also cleaves certain mRNAs containing XBP1-like secondary structures to promote the degradation of these mRNAs, a process known as regulated IRE1α-dependent decay (RIDD). We show here that the mRNA of CReP/Ppp1r15b, a regulatory subunit of eukaryotic translation initiation factor 2α (eIF2α) phosphatase, is a RIDD substrate. eIF2α plays a central role in the integrated stress response by mediating the translational attenuation to decrease the stress level in the cell. CReP expression was markedly suppressed in XBP1-deficient mice livers due to hyperactivated IRE1α. Decreased CReP expression caused the induction of eIF2α phosphorylation and the attenuation of protein synthesis in XBP1-deficient livers. ER stress also suppressed CReP expression in an IRE1α-dependent manner, which increased eIF2α phosphorylation and consequently attenuated protein synthesis. Taken together, the results of our study reveal a novel function of IRE1α in the regulation of eIF2α phosphorylation and the translational control.


2009 ◽  
Vol 83 (11) ◽  
pp. 5854-5863 ◽  
Author(s):  
Jürg P. F. Nüesch ◽  
Séverine Bär ◽  
Sylvie Lachmann ◽  
Jean Rommelaere

ABSTRACT The propagation of autonomous parvoviruses is strongly dependent on the phosphorylation of the major nonstructural protein NS1 by members of the protein kinase C (PKC) family. Minute virus of mice (MVM) replication is accompanied by changes in the overall phosphorylation pattern of NS1, which is newly modified at consensus PKC sites. These changes result, at least in part, from the ability of MVM to modulate the PDK-1/PKC pathway, leading to activation and redistribution of both PDK-1 and PKCη. We show that proteins of the ezrin-radixin-moesin (ERM) family are essential for virus propagation and spreading through their functions as adaptors for PKCη. MVM infection led to redistribution of radixin and moesin in the cell, resulting in increased colocalization of these proteins with PKCη. Radixin was found to control the PKCη-driven phosphorylation of NS1 and newly synthesized capsids in vivo. Conversely, radixin phosphorylation and activation were driven by the NS1/CKIIα complex. Altogether, these data argue for ERM proteins being both targets and modulators of parvovirus infection.


Sign in / Sign up

Export Citation Format

Share Document