prototype strain
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 36)

H-INDEX

40
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Nawal AlKaabi ◽  
Yun Kai Yang ◽  
Jing Zhang ◽  
Ke Xu ◽  
Yu Liang ◽  
...  

Background: The increased coronavirus disease 2019 (COVID-19) breakthrough cases pose the need of booster vaccinations. In this study, we reported the safety and immunogenicity of a heterologous boost with a recombinant COVID-19 vaccine (CHO cells), named NVSI-06-07, as a third dose in participants who have previously received two doses of the inactivated vaccine (BBIBP-CorV) at pre-specified time intervals. Using homologous boost with BBIBP-CorV as control, the safety and immunogenicity of the heterologous boost with NVSI-06-07 against various SARS-CoV-2 strains, including Omicron, were characterized. Methods: This study is a single-center, randomised, double-blinded, controlled phase 2 trial for heterologous boost of NVSI-06-07 in BBIBP-CorV recipients from the United Arab Emirates (UAE). Healthy adults (aged ≥18 years) were enrolled and grouped by the specified prior vaccination interval of BBIBP-CorV, i.e., 1-3 months, 4-6 months or ≥6 months, respectively, with 600 individuals per group. For each group, participants were randomly assigned at 1:1 ratio to receive either a heterologous boost of NVSI-06-07 or a homologous booster dose of BBIBP-CorV. The primary outcome was to comparatively assess the immunogenicity between heterologous and homologous boosts at 14 and 28 days post-boosting immunization, by evaluation of the geometric mean titers (GMTs) of IgG and neutralizing antibodies as well as the corresponding seroconversion rate (≥4-fold rise in antibody titers). The secondary outcomes were the safety profile of the boosting strategies within 30 days post vaccination. The exploratory outcome was the immune efficacy against Omicron and other variants of concern (VOCs) of SARS-CoV-2. This trial is registered with ClinicalTrials.gov, NCT05033847. Findings: A total of 1800 individuals who have received two doses of BBIBP-CorV were enrolled, of which 899 participants received a heterologous boost of NVSI-06-07 and 901 received a homologous boost for comparison. No vaccine-related serious adverse event (SAE) and no adverse events of special interest (AESI) were reported. 184 (20.47%) participants in the heterologous boost groups and 177 (19.64%) in the homologous boost groups reported at least one adverse reaction within 30 days. Most of the local and systemic adverse reactions reported were grades 1 (mild) or 2 (moderate), and there was no significant difference in the overall safety between heterologous and homologous boosts. Immunogenicity assays showed that the seroconversion rates in neutralizing antibodies against prototype SARS-CoV-2 elicited by heterologous boost were 89.96% - 97.52% on day 28 post-boosting vaccination, which was much higher than what was induced by homologous boost (36.80% - 81.75%). Similarly, in heterologous NVSI-06-07 booster groups, the neutralizing geometric mean titers (GMTs) against the prototype strain increased by 21.01 - 63.85 folds from baseline to 28 days post-boosting vaccination, whereas only 4.20 - 16.78 folds of increases were observed in homologous BBIBP-CorV booster group. For Omicron variant, the neutralizing antibody GMT elicited by the homologous boost of BBIBP-CorV was 37.91 (95%CI, 30.35-47.35), however, a significantly higher level of neutralizing antibodies with GMT 292.53 (95%CI, 222.81-384.07) was induced by the heterologous boost of NVSI-06-07, suggesting that it may serve as an effective boosting strategy combating the pandemic of Omicron. The similar results were obtained for other VOCs, including Alpha, Beta and Delta, in which the neutralizing response elicited by the heterologous boost was also significantly greater than that of the homologous boost. In the participants primed with BBIBP-CorV over 6 months, the largest increase in the neutralizing GMTs was obtained both in the heterologous and homologous boost groups, and thus the booster vaccination with over 6 months intervals was optimal. Interpretation: Our findings indicated that the heterologous boost with NVSI-06-07 was safe, well-tolerated and immunogenic in adults primed with a full regimen of BBIBP-CorV. Compared to homologous boost with a third dose of BBIBP-CorV, incremental increases in immune responses were achieved by the heterologous boost with NVSI-06-07 against SARS-CoV-2 prototype strain, Omicron variant, and other VOCs. The heterologous BBIBP-CorV/NVSI-06-07 prime-boosting vaccination may be valuable in preventing the pandemic of Omicron. The optimal booster strategy was the heterologous boost with NVSI-06-07 over 6 months after a priming with two doses of BBIBP-CorV.


Diseases ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Holly R. Hughes ◽  
Jason O. Velez ◽  
Kelly Fitzpatrick ◽  
Emily H. Davis ◽  
Brandy J. Russell ◽  
...  

The type species of the genus Coltivirus, Colorado tick fever virus (CTFV), was discovered in 1943 and is the most common tick-borne viral infection in the Western US. Despite its long history, very little is known about the molecular diversity of viruses classified within the species Colorado tick fever coltivirus. Previous studies have suggested genetic variants and potential serotypes of CTFV, but limited genetic sequence information is available for CTFV strains. To address this knowledge gap, we report herein the full-length genomes of five strains of CTFV, including Salmon River virus and California hare coltivirus (CTFV-Ca). The sequence from the full-length genome of Salmon River virus identified a high genetic identity to the CTFV prototype strain with >90% amino acid identity in all the segments except segment four, suggesting Salmon River virus is a strain of the species Colorado tick fever coltivirus. Additionally, analysis suggests that segment four has been associated with reassortment in at least one strain. The CTFV-Ca full-length genomic sequence was highly variable from the prototype CTFV in all the segments. The genome of CTFV-Ca was most similar to the Eyach virus, including similar segments six and seven. These data suggest that CTFV-Ca is not a strain of CTFV but a unique species. Additional sequence information of CTFV strains will improve the molecular surveillance tools and provide additional taxonomic resolution to this understudied virus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yandi Zhang ◽  
Jo-Lewis Banga Ndzouboukou ◽  
Mengze Gan ◽  
Xiaosong Lin ◽  
Xionglin Fan

Coronavirus disease 2019 (COVID-19) pandemic is a serious threat to global public health and social and economic development. Various vaccine platforms have been developed rapidly and unprecedentedly, and at least 16 vaccines receive emergency use authorization (EUA). However, the causative pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has continued to evolve and mutate, emerging lots of viral variants. Several variants have successfully become the predominant strains and spread all over the world because of their ability to evade the pre-existing immunity obtained after previous infections with prototype strain or immunizations. Here, we summarized the prevalence and biological structure of these variants and the efficacy of currently used vaccines against the SARS-CoV-2 variants to provide guidance on how to design vaccines more rationally against the variants.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009905
Author(s):  
Oluwafemi Babatunde Daodu ◽  
Albert Eisenbarth ◽  
Ansgar Schulz ◽  
Julia Hartlaub ◽  
James Olukayode Olopade ◽  
...  

Dugbe orthonairovirus (DUGV), a tick-borne zoonotic arbovirus, was first isolated in 1964 in Nigeria. For over four decades, no active surveillance was conducted to monitor the spread and genetic variation of DUGV. This study detected and genetically characterized DUGV circulating in cattle and their infesting ticks (Amblyomma and Rhipicephalus (Boophilus)) in Kwara State, North-Central Nigeria. Blood and or ticks were collected from 1051 cattle at 31 sampling sites (abattoirs and farms) across 10 local government areas of the State. DUGV detection was carried out by RT-qPCR, and positive samples sequenced and phylogenetically analysed. A total of 11824 ticks, mostly A. variegatum (36.0%) and R. (B.) microplus (63.9%), were obtained with mean tick burden of 12 ticks/cattle. Thirty-four (32 A. variegatum and two R. (B.) microplus) of 4644 examined ticks were DUGV-positive, whereas all of the cattle sera tested negative for DUGV genome. Whole genome sequence (S, M and L segments) and phylogenetic analyses indicate that the positive samples shared up to 99.88% nucleotide identity with and clustered around the Nigerian DUGV prototype strain IbAr 1792. Hence, DUGV with high similarity to the previously characterised strain has been detected in Nigeria. To our knowledge, this is the first report of DUGV in North-Central Nigeria and the most recent information after its last surveillance in 1974.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jeff Gauthier ◽  
Hélène Marquis ◽  
Valérie E. Paquet ◽  
Steve J. Charette ◽  
Roger C. Levesque ◽  
...  

Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that causes furunculosis, a fish disease claiming substantial economic losses in the aquaculture industry. Major challenges exist in monitoring and controlling fish infections in aquaculture farms. Development of management practices to improve the sustainability of fish farming with disease prevention necessitates studies using well-defined systems and well-characterized bacterial isolates. Even though several A. salmonicida subsp. salmonicida genomes have been completely assembled and thoroughly annotated, in vivo pathogenicity data are lacking. Here we present A. salmonicida subsp. salmonicida 890054 as a prototype strain for standardized furunculosis challenges with survival data. Computational analysis of sequencing results provided a complete circular genome with annotations of plasmids carrying virulence factors, antimicrobial resistance, and secondary metabolite coding genes. The analysis also revealed the presence of an IncU plasmid distinct from other IncU plasmids previously associated with Aeromonas.


2021 ◽  
Vol 118 (44) ◽  
pp. e2105253118
Author(s):  
Laura Bashor ◽  
Roderick B. Gagne ◽  
Angela M. Bosco-Lauth ◽  
Richard A. Bowen ◽  
Mark Stenglein ◽  
...  

SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell–expanded SARS-CoV-2 inoculum and viruses recovered from cats (n = 6), dogs (n = 3), hamsters (n = 3), and a ferret (n = 1) following experimental exposure. Five nonsynonymous changes relative to the USA-WA1/2020 prototype strain were near fixation in the stock used for inoculation but had reverted to wild-type sequences at these sites in dogs, cats, and hamsters within 1- to 3-d postexposure. A total of 14 emergent variants (six in nonstructural genes, six in spike, and one each in orf8 and nucleocapsid) were detected in viruses recovered from animals. This included substitutions in spike residues H69, N501, and D614, which also vary in human lineages of concern. Even though a live virus was not cultured from dogs, substitutions in replicase genes were detected in amplified sequences. The rapid selection of SARS-CoV-2 variants in vitro and in vivo reveals residues with functional significance during host switching. These observations also illustrate the potential for spillback from animal hosts to accelerate the evolution of new viral lineages, findings of particular concern for dogs and cats living in households with COVID-19 patients. More generally, this glimpse into viral host switching reveals the unrealized rapidity and plasticity of viral evolution in experimental animal model systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keita Wagatsuma ◽  
Ryosuke Sato ◽  
Satoru Yamazaki ◽  
Masako Iwaya ◽  
Yoshiki Takahashi ◽  
...  

The coronavirus disease 2019 (COVID-19) has caused a serious disease burden and poses a tremendous public health challenge worldwide. Here, we report a comprehensive epidemiological and genomic analysis of SARS-CoV-2 from 63 patients in Niigata City, a medium-sized Japanese city, during the early phase of the pandemic, between February and May 2020. Among the 63 patients, 32 (51%) were female, with a mean (±standard deviation) age of 47.9 ± 22.3 years. Fever (65%, 41/63), malaise (51%, 32/63), and cough (35%, 22/63) were the most common clinical symptoms. The median Ct value after the onset of symptoms lowered within 9 days at 20.9 cycles (interquartile range, 17–26 cycles), but after 10 days, the median Ct value exceeded 30 cycles (p < 0.001). Of the 63 cases, 27 were distributed in the first epidemic wave and 33 in the second, and between the two waves, three cases from abroad were identified. The first wave was epidemiologically characterized by a single cluster related to indoor sports activity spread in closed settings, which included mixing indoors with families, relatives, and colleagues. The second wave showed more epidemiologically diversified events, with most index cases not related to each other. Almost all secondary cases were infected by droplets or aerosols from closed indoor settings, but at least two cases in the first wave were suspected to be contact infections. Results of the genomic analysis identified two possible clusters in Niigata City, the first of which was attributed to clade S (19B by Nexstrain clade) with a monophyletic group derived from the Wuhan prototype strain but that of the second wave was polyphyletic suggesting multiple introductions, and the clade was changed to GR (20B), which mainly spread in Europe in early 2020. These findings depict characteristics of SARS-CoV-2 transmission in the early stages in local community settings during February to May 2020 in Japan, and this integrated approach of epidemiological and genomic analysis may provide valuable information for public health policy decision-making for successful containment of chains of infection.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jinkai Zang ◽  
Yuanfei Zhu ◽  
Yu Zhou ◽  
Chenjian Gu ◽  
Yufang Yi ◽  
...  

AbstractMassive production of efficacious SARS-CoV-2 vaccines is essential for controlling the ongoing COVID-19 pandemic. We report here the preclinical development of yeast-produced receptor-binding domain (RBD)-based recombinant protein SARS-CoV-2 vaccines. We found that monomeric RBD of SARS-CoV-2 could be efficiently produced as a secreted protein from transformed Pichia pastoris (P. pastoris) yeast. Yeast-derived RBD-monomer possessed functional conformation and was able to elicit protective level of neutralizing antibodies in mice. We further designed and expressed a genetically linked dimeric RBD protein in yeast. The engineered dimeric RBD was more potent than the monomeric RBD in inducing long-lasting neutralizing antibodies. Mice immunized with either monomeric RBD or dimeric RBD were effectively protected from live SARS-CoV-2 virus challenge even at 18 weeks after the last vaccine dose. Importantly, we found that the antisera raised against the RBD of a single SARS-CoV-2 prototype strain could effectively neutralize the two predominant circulating variants B.1.1.7 and B.1.351, implying broad-spectrum protective potential of the RBD-based vaccines. Our data demonstrate that yeast-derived RBD-based recombinant SARS-CoV-2 vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of SARS-CoV-2 vaccines to achieve global immunization.


Intervirology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Neli S. Korsun ◽  
Svetla G. Angelova ◽  
Ivelina T. Trifonova ◽  
Silvia E. Voleva ◽  
Iliana G. Grigorova ◽  
...  

<b><i>Introduction:</i></b> We investigated the prevalence of human metapneumovirus (hMPV) among patients with acute respiratory infections in Bulgaria, and performed genetic characterization of the F gene of these strains. <b><i>Methods:</i></b> Nasopharyngeal swabs collected from patients of a range of ages were tested by using real-time PCR for 12 respiratory viruses. The F gene was sequenced, and phylogenetic and amino acid analyses of the F gene/protein were performed. <b><i>Results:</i></b> A total of 1,842 patients were examined during a 3-year period; 1,229 patients (66.7%) were positive for at least one respiratory virus. hMPV was identified in 83 (4.5%) patient samples. Eleven (13%) of hMPV-positive patients were coinfected with another respiratory virus. The hMPV incidence rate in the 2016/2017, 2017/2018, and 2018/2019 winter seasons was 5.4, 5.4, and 3.1%, respectively. hMPV was mainly detected in specimens collected between January and May (89.2% of cases). The incidence of hMPV infection was highest (5.1%) among the youngest age-group (0–4 years), where hMPV was a causative agent in 8.1 and 4.8% of bronchiolitis and pneumonia cases, respectively. Among the patients aged ≥5 years, hMPV was detected in 2.2 and 3.2% of cases of pneumonia and central nervous system infections, respectively. Phylogenetic analysis of the F gene showed that the sequenced hMPV strains belonged to the A2b, B1, and B2 genotypes. Numerous amino acid substitutions were identified compared with the NL00/1 prototype strain. <b><i>Conclusion:</i></b> This study revealed the significant role of hMPV as a causative agent of serious respiratory illnesses in early childhood, and also demonstrated year-to-year changes in hMPV prevalence and genetic diversity in circulating strains.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1421
Author(s):  
Yong Yang ◽  
Jinkai Zang ◽  
Shiqi Xu ◽  
Xueyang Zhang ◽  
Sule Yuan ◽  
...  

The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the currently approved SARS-CoV-2 vaccines use the prototype strain-derived spike (S) protein or its receptor-binding domain (RBD) as the vaccine antigen. The emergence of several novel SARS-CoV-2 variants has raised concerns about potential immune escape. In this study, we performed an immunogenicity comparison of prototype strain-derived RBD, S1, and S ectodomain trimer (S-trimer) antigens and evaluated their induction of neutralizing antibodies against three circulating SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.617.1. We found that, at the same antigen dose, the RBD and S-trimer vaccines were more potent than the S1 vaccine in eliciting long-lasting, high-titer broadly neutralizing antibodies in mice. The RBD immune sera remained highly effective against the B.1.1.7, B.1.351, and B.1.617.1 variants despite the corresponding neutralizing titers decreasing by 1.2-, 2.8-, and 3.5-fold relative to that against the wild-type strain. Significantly, the S-trimer immune sera exhibited comparable neutralization potency (less than twofold variation in neutralizing GMTs) towards the prototype strain and all three variants tested. These findings provide valuable information for further development of recombinant protein-based SARS-CoV-2 vaccines and support the continued use of currently approved SARS-CoV-2 vaccines in the regions/countries where variant viruses circulate.


Sign in / Sign up

Export Citation Format

Share Document