scholarly journals Identification and Characterization of the Physiological Gene Targets of the Essential Lytic Replicative Epstein-Barr Virus SM Protein

2015 ◽  
Vol 90 (3) ◽  
pp. 1206-1221 ◽  
Author(s):  
Jacob Thompson ◽  
Dinesh Verma ◽  
DaJiang Li ◽  
Tim Mosbruger ◽  
Sankar Swaminathan

ABSTRACTEpstein-Barr virus (EBV) SM protein is an essential lytic cycle protein with multiple posttranscriptional mechanisms of action. SM binds RNA and increases accumulation of specific EBV transcripts. Previous studies using microarrays and PCR have shown that SM-null mutants fail to accumulate several lytic cycle mRNAs and proteins at wild-type levels. However, the complete effect of SM on the EBV transcriptome has been incompletely characterized. Here we precisely identify the effects of SM on all EBV transcripts by high-throughput RNA sequencing, quantitative PCR (qPCR), and Northern blotting. The effect of SM on EBV mRNAs was highly skewed and was most evident on 13 late genes, demonstrating why SM is essential for infectious EBV production. EBV DNA replication was also partially impaired in SM mutants, suggesting additional roles for SM in EBV DNA replication. While it has been suggested that SM specificity is based on recognition of either RNA sequence motifs or other sequence properties, no such unifying property of SM-responsive targets was discernible. The binding affinity of mRNAs for SM also did not correlate with SM responsiveness. These data suggest that while target RNA binding by SM may be required for its effect, specific activation by SM is due to differences in inherent properties of individual transcripts. We therefore propose a new model for the mechanism of action and specificity of SM and its homologs in other herpesviruses: that they bind many RNAs but only enhance accumulation of those that are intrinsically unstable and poorly expressed.IMPORTANCEThis study examines the mechanism of action of EBV SM protein, which is essential for EBV replication and infectious virus production. Since SM protein is not similar to any cellular protein and has homologs in all other human herpesviruses, it has potential importance as a therapeutic target. Here we establish which EBV RNAs are most highly upregulated by SM, allowing us to understand why it is essential for EBV replication. By comparing and characterizing these RNA transcripts, we conclude that the mechanism of specific activity is unlikely to be based simply on preferential recognition of a target motif. Rather, SM binding to its target RNA may be necessary but not sufficient for enhancing accumulation of the RNA. Preferential effects of SM on its most responsive RNA targets may depend on other inherent characteristics of these specific mRNAs that require SM for efficient expression, such as RNA stability.

2010 ◽  
Vol 84 (22) ◽  
pp. 11781-11789 ◽  
Author(s):  
Dinesh Verma ◽  
Swarna Bais ◽  
Melusine Gaillard ◽  
Sankar Swaminathan

ABSTRACT Epstein-Barr virus (EBV) SM protein is an essential nuclear protein produced during the lytic cycle of EBV replication. SM is an RNA-binding protein with multiple mechanisms of action. SM enhances the expression of EBV genes by stabilizing mRNA and facilitating nuclear export. SM also influences splicing of both EBV and cellular pre-mRNAs. SM modulates splice site selection of the host cell STAT1 pre-mRNA, directing utilization of a novel 5′ splice site that is used only in the presence of SM. SM activates splicing in the manner of SR proteins but does not contain the canonical RS domains typical of cellular splicing factors. Affinity purification and mass spectrometry of SM complexes from SM-transfected cells led to the identification of the cellular SR splicing factor SRp20 as an SM-interacting protein. The regions of SM and SRp20 required for interaction were mapped by in vitro and in vivo assays. The SRp20 interaction was shown to be important for the effects of SM on alternative splicing by the use of STAT1 splicing assays. Overexpression of SRp20 enhanced SM-mediated alternative splicing and knockdown of SRp20 inhibited the SM effect on splicing. These data suggest a model whereby SM, a viral protein, recruits and co-opts the function of cellular SRp20 in alternative splicing.


2007 ◽  
Vol 81 (8) ◽  
pp. 4058-4069 ◽  
Author(s):  
Zhao Han ◽  
Elessa Marendy ◽  
Yong-Dong Wang ◽  
Jing Yuan ◽  
Jeffery T. Sample ◽  
...  

ABSTRACT The effect of Epstein-Barr virus (EBV) SM protein on EBV gene expression was examined using a recombinant EBV strain with the SM gene deleted and DNA microarrays representing all known EBV coding regions. Induction of lytic EBV replication in the absence of SM led to expression of approximately 40% of EBV genes, but a block in expression of over 50% of EBV genes. Contrary to previous findings, several early genes were SM dependent, and lytic EBV DNA replication did not occur in the absence of SM. Notably, two genes essential for lytic EBV DNA replication, BSLF1 and BALF5, encoding EBV DNA primase and polymerase, respectively, were SM dependent. Lytic DNA replication was partially rescued by ectopic expression of EBV primase and polymerase, but virion production was not. Rescue of DNA replication only enhanced expression of a subset of late genes, consistent with a direct requirement for SM for late gene expression in addition to its contribution to DNA replication. Therefore, while SM is essential for most late gene expression, the proximate block to virion production by the EBV SM deletion strain is an inability to replicate linear DNA. The block to DNA replication combined with the direct effect of SM on late gene expression leads to a global deficiency of late gene expression. SM also inhibited BHRF1 expression during productive replication in comparison to that of cells induced into lytic replication in the absence of SM. Thus, SM plays a role in multiple steps of lytic cycle EBV gene expression and that it is transcript-specific in both activation and repression functions.


Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 604-611 ◽  
Author(s):  
Yassine Al Tabaa ◽  
Edouard Tuaillon ◽  
Karine Bollore ◽  
Vincent Foulongne ◽  
Gael Petitjean ◽  
...  

AbstractThe Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes latency in resting memory B lymphocytes, and is involved in oncogenesis through poorly understood mechanisms. The EBV lytic cycle is initiated during plasma cell differentiation by mRNAs transcripts encoded by BZLF1, which induce the synthesis of EBV proteins such as the immediate-early antigen ZEBRA and the late membrane antigen gp350. Therefore, we assessed the capacity of circulating EBV-infected B lymphocytes from healthy EBV-seropositive subjects to enter and complete the EBV lytic cycle. Purified B lymphocytes were polyclonally stimulated and BZLF1- or gp350-secreting cells (BZLF1-SCs or gp350-SCs) were enumerated by ELISpot assays. The number of BZLF1-SCs ranged from 50 to 480/107 lymphocytes (median, 80; 25th-75th percentiles, 70-150) and gp350-SCs from 10 to 40/107 lymphocytes (median, 17; 25th-75th percentiles, 10-20). gp350-SCs represented only 7.7% to 28.6% of BZLF1-SCs (median, 15%; 25th-75th percentiles, 10.5%-20%). This EBV functional reservoir was preferentially restricted to plasma cells derived from CD27+ IgD− memory B lymphocytes. In 9 of 13 subjects, EBV DNA quantification in B-cell culture supernatants gave evidence of completion of EBV lytic cycle. These results demonstrate that EBV proteins can be secreted by EBV-infected B lymphocytes from healthy carriers, a majority generating an abortive EBV lytic cycle and a minority completing the cycle.


2009 ◽  
Vol 83 (22) ◽  
pp. 11635-11644 ◽  
Author(s):  
Zhao Han ◽  
Dinesh Verma ◽  
Chelsey Hilscher ◽  
Dirk P. Dittmer ◽  
Sankar Swaminathan

ABSTRACT Epstein-Barr virus (EBV) SM protein is an essential nuclear shuttling protein expressed by EBV early during the lytic phase of replication. SM acts to increase EBV lytic gene expression by binding EBV mRNAs and enhancing accumulation of the majority of EBV lytic cycle mRNAs. SM increases target mRNA stability and nuclear export, in addition to modulating RNA splicing. SM and its homologs in other herpesvirus have been hypothesized to function in part by binding viral RNAs and recruiting cellular export factors. Although activation of gene expression by SM is gene specific, it is unknown whether SM binds to mRNA in a specific manner or whether its RNA binding is target independent. SM-mRNA complexes were isolated from EBV-infected B-lymphocyte cell lines induced to permit lytic EBV replication, and a quantitative measurement of mRNAs corresponding to all known EBV open reading frames was performed by real-time quantitative reverse transcription-PCR. The results showed that although SM has broad RNA binding properties, there is a clear hierarchy of affinities among EBV mRNAs with respect to SM complex formation. In vitro binding assays with two of the most highly SM-associated transcripts suggested that SM binds preferentially to specific sequences or structures present in noncoding regions of some EBV mRNAs. Furthermore, the presence of these sequences conferred responsiveness to SM. These data are consistent with a mechanism of action similar to that of hnRNPs, which exert sequence-specific effects on gene expression despite having multiple degenerate consensus binding sites common to a large number of RNAs.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Adityarup Chakravorty ◽  
Bill Sugden ◽  
Eric C. Johannsen

ABSTRACTThe Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication incis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.


2010 ◽  
Vol 84 (14) ◽  
pp. 7073-7082 ◽  
Author(s):  
Andrew J. Rennekamp ◽  
Pu Wang ◽  
Paul M. Lieberman

ABSTRACT The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.


2009 ◽  
Vol 83 (20) ◽  
pp. 10336-10346 ◽  
Author(s):  
Julie Norseen ◽  
F. Brad Johnson ◽  
Paul M. Lieberman

ABSTRACT Latent infection by Epstein-Barr virus (EBV) requires both replication and maintenance of the viral genome. EBV nuclear antigen 1 (EBNA1) is a virus-encoded protein that is critical for the replication and maintenance of the genome during latency in proliferating cells. We have previously demonstrated that EBNA1 recruits the cellular origin recognition complex (ORC) through an RNA-dependent interaction with EBNA1 linking region 1 (LR1) and LR2. We now show that LR1 and LR2 bind to G-rich RNA that is predicted to form G-quadruplex structures. Several chemically distinct G-quadruplex-interacting drugs disrupted the interaction between EBNA1 and ORC. The G-quadruplex-interacting compound BRACO-19 inhibited EBNA1-dependent stimulation of viral DNA replication and preferentially blocked proliferation of EBV-positive cells relative to EBV-negative cell lines. BRACO-19 treatment also disrupted the ability of EBNA1 to tether to metaphase chromosomes, suggesting that maintenance function is also mediated through G-quadruplex recognition. These findings suggest that the EBNA1 replication and maintenance function uses a common G-quadruplex binding capacity of LR1 and LR2, which may be targetable by small-molecule inhibitors.


2003 ◽  
Vol 77 (1) ◽  
pp. 228-236 ◽  
Author(s):  
Jeremy Poppers ◽  
Matthew Mulvey ◽  
Cesar Perez ◽  
David Khoo ◽  
Ian Mohr

ABSTRACT The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response.


2009 ◽  
Vol 83 (10) ◽  
pp. 5219-5231 ◽  
Author(s):  
Jian Zhu ◽  
Gangling Liao ◽  
Liang Shan ◽  
Jun Zhang ◽  
Mei-Ru Chen ◽  
...  

ABSTRACT A conserved family of herpesvirus protein kinases plays a crucial role in herpesvirus DNA replication and virion production. However, despite the fact that these kinases are potential therapeutic targets, no systematic studies have been performed to identify their substrates. We generated an Epstein-Barr virus (EBV) protein array to evaluate the targets of the EBV protein kinase BGLF4. Multiple proteins involved in EBV lytic DNA replication and virion assembly were identified as previously unrecognized substrates for BGLF4, illustrating the broad role played by this protein kinase. Approximately half of the BGLF4 targets were also in vitro substrates for the cellular kinase CDK1/cyclin B. Unexpectedly, EBNA1 was identified as a substrate and binding partner of BGLF4. EBNA1 is essential for replication and maintenance of the episomal EBV genome during latency. BGLF4 did not prevent EBNA1 binding to sites in the EBV latency origin of replication, oriP. Rather, we found that BGLF4 was recruited by EBNA1 to oriP in cells transfected with an oriP vector and BGLF4 and in lytically induced EBV-positive Akata cells. In cells transfected with an oriP vector, the presence of BGLF4 led to more rapid loss of the episomal DNA, and this was dependent on BGLF4 kinase activity. Similarly, expression of doxycycline-inducible BGLF4 in Akata cells led to a reduction in episomal EBV genomes. We propose that BGLF4 contributes to effective EBV lytic cycle progression, not only through phosphorylation of EBV lytic DNA replication and virion proteins, but also by interfering with the EBNA1 replication function.


Sign in / Sign up

Export Citation Format

Share Document