scholarly journals Mn2+ Suppressor Mutations and Biochemical Communication between Ty1 Reverse Transcriptase and RNase H Domains

2007 ◽  
Vol 81 (17) ◽  
pp. 9004-9012 ◽  
Author(s):  
Robert M. Yarrington ◽  
Jichao Chen ◽  
Eric C. Bolton ◽  
Jef D. Boeke

ABSTRACT Ty1 reverse transcriptase/RNase H (RT/RH) is exquisitely sensitive to manganese concentrations. Elevated intracellular free Mn2+ inhibits Ty1 retrotransposition and in vitro Ty1 RT-polymerizing activity. Furthermore, Mn2+ inhibition is not limited to the Ty1 RT, as this ion similarly inhibits the activities of both avian myeloblastosis virus and human immunodeficiency virus type 1 RTs. To further characterize Mn2+ inhibition, we generated RT/RH suppressor mutants capable of increased Ty1 transposition in pmr1Δ cells. PMR1 codes for a P-type ATPase that regulates intracellular calcium and manganese ion homeostasis, and pmr1 mutants accumulate elevated intracellular manganese levels and display 100-fold less transposition than PMR1 + cells. Mapping of these suppressor mutations revealed, surprisingly, that suppressor point mutations localize not to the RT itself but to the RH domain of the protein. Furthermore, Mn2+ inhibition of in vitro RT activity is greatly reduced in all the suppressor mutants, whereas RH activity and cleavage specificity remain largely unchanged. These intriguing results reveal that the effect of these suppressor mutations is transmitted to the polymerase domain and suggest biochemical communication between these two domains during reverse transcription.


2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.



2007 ◽  
Vol 81 (15) ◽  
pp. 7852-7859 ◽  
Author(s):  
Jessica H. Brehm ◽  
Dianna Koontz ◽  
Jeffrey D. Meteer ◽  
Vinay Pathak ◽  
Nicolas Sluis-Cremer ◽  
...  

ABSTRACT Recent work indicates that mutations in the C-terminal domains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) increase 3′-azido-3′-dideoxythymidine (AZT) resistance. Because it is not known whether AZT selects for mutations outside of the polymerase domain of RT, we carried out in vitro experiments in which HIV-1LAI or AZT-resistant HIV-1LAI (M41L/L210W/T215Y) was passaged in MT-2 cells in increasing concentrations of AZT. The first resistance mutations to appear in HIV-1LAI were two polymerase domain thymidine analog mutations (TAMs), D67N and K70R, and two novel mutations, A371V in the connection domain and Q509L in the RNase H domain, that together conferred up to 90-fold AZT resistance. Thereafter, the T215I mutation appeared but was later replaced by T215F, resulting in a large increase in AZT resistance (∼16,000-fold). Mutations in the connection and RNase H domains were not selected starting with AZT-resistant virus (M41L/L210W/T215Y). The roles of A371V and Q509L in AZT resistance were confirmed by site-directed mutagenesis: A371V and Q509L together increased AZT resistance ∼10- to 50-fold in combination with TAMs (M41L/L210W/T215Y or D67N/K70R/T215F) but had a minimal effect without TAMs (1.7-fold). A371V and Q509L also increased cross-resistance with TAMs to lamivudine and abacavir, but not stavudine or didanosine. These results provide the first evidence that mutations in the connection and RNase H domains of RT can be selected in vitro by AZT and confer greater AZT resistance and cross-resistance to nucleoside RT inhibitors in combination with TAMs in the polymerase domain.



1997 ◽  
Vol 8 (4) ◽  
pp. 353-362 ◽  
Author(s):  
SW Baertschi ◽  
AS Cantrell ◽  
MT Kuhfeld ◽  
U Lorenz ◽  
DB Boyd ◽  
...  

Previous work by Hafkemeyer et al. (1991) [ Nucleic Acids Research19: 4059–4065] indicated that a degradation product of ceftazidime, termed HP 0.35, was active against the RNase H activity of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptase (RT) in vitro. Attempting to repeat these results, we isolated HP 0.35 from an aqueous degradation of ceftazidime and, after careful purification, we found HP 0.35 to be essentially inactive against both the polymerase and RNase H domains of HIV-1 RT (IC50 of >100 μg mL−1). During the investigation we discovered that polymeric degradation products of ceftazidime inhibited both the polymerase and, to a greater extent, the RNase H activities of HIV-1 RT in vitro (IC50 approximately 0.1 and 0.01 μg mL−1, respectively). Subjecting HP 0.35 to conditions under which it could polymerize induced inhibitory activity similar to that of the polymeric ceftazidime degradation products. It is proposed that the previously reported activity of HP 0.35 may have resulted from the presence of low levels of polymeric material either from incomplete purification or from polymerization of HP 0.35 during storage or in vitro testing.





1999 ◽  
Vol 73 (3) ◽  
pp. 1885-1893 ◽  
Author(s):  
Robert E. Lanford ◽  
Young-Ho Kim ◽  
Helen Lee ◽  
Lena Notvall ◽  
Burton Beames

ABSTRACT Hepadnavirus polymerases initiate reverse transcription in a protein-primed reaction. We previously described a complementation assay for analysis of the roles of the TP and RT domains of HBV reverse transcriptase (pol) in the priming reaction. Independently expressed TP and RT domains form a complex functional for in vitro priming reactions. To map the minimal functional TP and RT domains, we prepared baculoviruses expressing amino- and carboxyl-terminal deletions of both the TP and RT domains and analyzed the proteins for the ability to participate in transcomplementation for the priming reaction. The minimal TP domain spanned amino acids 20 to 175; however, very little activity was observed without a TP domain spanning amino acids 1 to 199. The minimal RT domain spanned amino acids 300 to 775; however, little activity was observed unless the carboxyl end of the RT domain extended to amino acid 800. Thus, most of the RNase H domain was required. In previous studies, we observed a TP inhibitory domain between amino acids 199 and 344. The current analysis narrowed this domain to residues 300 to 334, which is a portion of the minimal RT domain. In addition, the ability of TP and RT deletion mutants to form stable TP-RT complexes was examined in coimmunoprecipitation assays. The minimal TP and RT domains capable of protein-protein interaction were considerably smaller than the domains required for functional interaction in the transcomplementation assays, and unlike priming activity, TP-RT interaction did not require the epsilon RNA stem-loop. These studies help to further define the complex protein-protein interactions required in HBV genome replication.





2008 ◽  
Vol 82 (17) ◽  
pp. 8592-8604 ◽  
Author(s):  
Kevin W. Chang ◽  
Jangsuk Oh ◽  
W. Gregory Alvord ◽  
Stephen H. Hughes

ABSTRACT We previously reported that a mutant Rous sarcoma virus (RSV) with an alternate polypurine tract (PPT), DuckHepBFlipPPT, had unexpectedly high titers and that the PPT was miscleaved primarily at one position following a GA dinucleotide by the RNase H of reverse transcriptase (RT). This miscleavage resulted in a portion of the 3′ end of the PPT (5′-ATGTA) being added to the end of U3 of the linear viral DNA. To better understand the RNase H cleavage by RSV RT, we made a number of mutations within the DuckHepBFlipPPT and in the sequences adjacent to the PPT. Deleting the entire ATGTA sequence from the DuckHepBFlipPPT increased the relative titer to wild-type levels, while point mutations within the ATGTA sequence reduced the relative titer but had minimal effects on the cleavage specificity. However, mutating a sequence 5′ of ATGTA affected the relative titer of the virus and caused the RNase H of RSV RT to lose the ability to cleave the PPT specifically. In addition, although mutations in the conserved stretch of thymidine residues upstream of the PPT did not affect the relative titer or cleavage specificity, the mutation of some of the nucleotides immediately upstream of the PPT did affect the titer and cleavage specificity. Taken together, our studies show that the structure of the PPT in the context of the cognate RT, rather than a specific sequence, is important for the proper cleavage by RSV RT.



2011 ◽  
Vol 55 (8) ◽  
pp. 3758-3764 ◽  
Author(s):  
Jeffrey D. Meteer ◽  
Dianna Koontz ◽  
Ghazia Asif ◽  
Hong-wang Zhang ◽  
Mervi Detorio ◽  
...  

ABSTRACTWe recently reported that HIV-1 resistant to 3′-azido-3′-deoxythymidine (AZT) is not cross-resistant to 3′-azido-2′,3′-dideoxypurines. This finding suggested that the nucleoside base is a major determinant of HIV-1 resistance to nucleoside analogs. To further explore this hypothesis, we conductedin vitroselection experiments by serial passage of HIV-1LAIin MT-2 cells in increasing concentrations of 3′-azido-2′,3′-dideoxyguanosine (3′-azido-ddG), 3′-azido-2′,3′-dideoxycytidine (3′-azido-ddC), or 3′-azido-2′,3′-dideoxyadenosine (3′-azido-ddA). 3′-Azido-ddG selected for virus that was 5.3-fold resistant to 3′-azido-ddG compared to wild-type HIV-1LAIpassaged in the absence of drug. Population sequencing of the entire reverse transcriptase (RT) gene identified L74V, F77L, and L214F mutations in the polymerase domain and K476N and V518I mutations in the RNase H domain. However, when introduced into HIV-1 by site-directed mutagenesis, these 5 mutations only conferred ∼2.0-fold resistance. Single-genome sequencing analyses of the selected virus revealed a complex population of mutants that all contained L74V and L214F linked to other mutations, including ones not identified during population sequencing. Recombinant HIV-1 clones containing RT derived from single sequences exhibited 3.2- to 4.0-fold 3′-azido-ddG resistance. In contrast to 3′-azido-ddG, 3′-azido-ddC selected for the V75I mutation in HIV-1 RT that conferred 5.9-fold resistance, compared to the wild-type virus. Interestingly, we were unable to select HIV-1 that was resistant to 3′-azido-ddA, even at concentrations of 3′-azido-ddA that yielded high intracellular levels of 3′-azido-ddA-5′-triphosphate. Taken together, these findings show that the nucleoside base is a major determinant of HIV-1 resistance mechanisms that can be exploited in the design of novel nucleoside RT inhibitors.



Sign in / Sign up

Export Citation Format

Share Document