manganese ion
Recently Published Documents





2021 ◽  
Vol 12 (1) ◽  
Songshan Bi ◽  
Shuai Wang ◽  
Fang Yue ◽  
Zhiwei Tie ◽  
Zhiqiang Niu

AbstractAqueous rechargeable metal batteries are intrinsically safe due to the utilization of low-cost and non-flammable water-based electrolyte solutions. However, the discharge voltages of these electrochemical energy storage systems are often limited, thus, resulting in unsatisfactory energy density. Therefore, it is of paramount importance to investigate alternative aqueous metal battery systems to improve the discharge voltage. Herein, we report reversible manganese-ion intercalation chemistry in an aqueous electrolyte solution, where inorganic and organic compounds act as positive electrode active materials for Mn2+ storage when coupled with a Mn/carbon composite negative electrode. In one case, the layered Mn0.18V2O5·nH2O inorganic cathode demonstrates fast and reversible Mn2+ insertion/extraction due to the large lattice spacing, thus, enabling adequate power performances and stable cycling behavior. In the other case, the tetrachloro-1,4-benzoquinone organic cathode molecules undergo enolization during charge/discharge processes, thus, contributing to achieving a stable cell discharge plateau at about 1.37 V. Interestingly, the low redox potential of the Mn/Mn2+ redox couple vs. standard hydrogen electrode (i.e., −1.19 V) enables the production of aqueous manganese metal cells with operational voltages higher than their zinc metal counterparts.

2021 ◽  
Vol 68 (3) ◽  
pp. 548-561
Boutheina Djobbi ◽  
Ghofrane Lassoued Ben Miled ◽  
Hatem Raddadi ◽  
Rached Ben Hassen

The adsorption of manganese ions from aqueous solutions by pure and acid-treated Opuntia ficus indica as natural low-cost and eco-friendly adsorbents was investigated. The adsorbents’ structures were characterized by powder X-ray diffraction and infrared spectroscopy. Specific surface areas were determined using the Brunauer-Emmett-Tell equation. The study was carried out under various parameters influencing the manganese removal efficiency such as pH, temperature, contact time, adsorbent dose and initial concentration of manganese ion. The maximum adsorption capacity reached 42.02 mg/g for acid-treated Opuntia ficus indica, and only 20.8 mg /g for pure Opuntia ficus indica. The Langmuir, Freundlich and Temkin isotherms equations were tested, and the best fit was obtained by the Langmuir model for both adsorbents. The thermodynamic study shows that chemisorption is the main adsorption mechanism for the activated adsorbent while physisorption is the main adsorption mechanism for the pure adsorbent. The kinetics of the adsorption have been studied using four kinetics models of pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion. Structural analyses indicate the appearance of MnOx oxides on the cellulose fibers. The adsorption mechanisms consist of an electrostatic interaction followed by oxidation of the Mn (II) to higher degrees, then probably by binding to the surface of the adsorbent by different C-O-MnOx bonds.

2021 ◽  
Vol 1162 ◽  
pp. 81-86
Yasdi Yasdi ◽  
Rinaldi Rinaldi ◽  
Wahyu Fajar Winata ◽  
Febri Juita Anggraini ◽  
Ika Yanti ◽  

Peat waters were abundant in the West Tanjung Jabung Regency of Jambi Province. Peat water contains manganese metal ion concentration that exceeds the clean water quality standard. Previous studies have been conducted to reduce levels of manganese in peat water, but the results have not been significant. This study aims to reduce levels of Manganese metal in peat water using the composition of Bentonite and Biochar. The adsorption process was carried out at room temperature (29 °C) with a stirring of 200 rpm. Some parameters measured were optimum pH of adsorption, optimum contact time and the best combination between Bentonite and Biochar. Manganese ion concentration in solution was measured using atomic absorption spectroscopy (AAS). The results of this study indicate that the optimum conditions for removing manganese ion at pH 5 and contact time 40 minutes. Tests on artificial solutions using 0.2 grams of biochar showed Mn ion removal of 42.91% (C0 = 100 mg/L, Ce = 57.09 mg/L, V = 100 mL). The best combination obtained in Bentonite: Biochar (1:2) with a mass of 0.080 gr and 0.170 gr, respectively, which able to remove 91.29% manganese ions in peat water.

Chemosphere ◽  
2021 ◽  
Vol 269 ◽  
pp. 129436
Meng Xiao ◽  
Yanfeng Qi ◽  
Qingmin Feng ◽  
Kun Li ◽  
Kaiqi Fan ◽  

Sign in / Sign up

Export Citation Format

Share Document