scholarly journals Identification of RNA Helicase A as a New Host Factor in the Replication Cycle of Foot-and-Mouth Disease Virus

2009 ◽  
Vol 83 (21) ◽  
pp. 11356-11366 ◽  
Author(s):  
Paul Lawrence ◽  
Elizabeth Rieder

ABSTRACT Foot-and-mouth disease virus (FMDV), as with other RNA viruses, recruits various host cell factors to assist in the translation and replication of the virus genome. In this study, we investigated the role of RNA helicase A (RHA) in the life cycle of FMDV. Immunofluorescent microscopy (IFM) showed a change in the subcellular distribution of RHA from the nucleus to the cytoplasm in FMDV-infected cells as infection progressed. Unlike nuclear RHA, the RHA detected in the cytoplasm reacted with an antibody that recognizes only the nonmethylated form of RHA. In contrast to alterations in the subcellular distribution of nuclear factors observed during infection with the related cardioviruses, cytoplasmic accumulation of RHA did not require the activity of the FMDV leader protein. Using IFM, we have found cytoplasmic RHA in proximity to the viral 2C and 3A proteins, which promotes the assembly of the replication complexes, as well as cellular poly(A) binding protein (PABP). Coimmunoprecipitation assays confirmed that these proteins are complexed with RHA. We have also identified a novel interaction between RHA and the S fragment in the FMDV 5′ nontranslated region. Moreover, a reduction in the expression of RHA, using RHA-specific small interfering RNA constructs, inhibited FMDV replication. These results indicate that RHA plays an essential role in the replication of FMDV and potentially other picornaviruses through ribonucleoprotein complex formation at the 5′ end of the genome and by interactions with 2C, 3A, and PABP.

2019 ◽  
Vol 34 (6) ◽  
pp. 610-617 ◽  
Author(s):  
Qiao Xue ◽  
Huisheng Liu ◽  
Qiaoying Zeng ◽  
Haixue Zheng ◽  
Qinghong Xue ◽  
...  

Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document