scholarly journals A High Level of Mutation Tolerance in the Multifunctional Sequence Encoding the RNA Encapsidation Signal of an Avian Hepatitis B Virus and Slow Evolution Rate Revealed by In Vivo Infection

2011 ◽  
Vol 85 (18) ◽  
pp. 9300-9313 ◽  
Author(s):  
B. Schmid ◽  
C. Rosler ◽  
M. Nassal
2002 ◽  
Vol 83 (5) ◽  
pp. 991-996 ◽  
Author(s):  
Kurt Reifenberg ◽  
Petra Nusser ◽  
Jürgen Löhler ◽  
Gabriele Spindler ◽  
Christa Kuhn ◽  
...  

The function of the X protein (pX) in the replication cycle of mammalian hepadnaviruses is enigmatic. Using tissue culture experiments it has been shown that the X gene product is not central to hepatitis B virus (HBV) replication and virion export. However, at present it is still unclear whether this also applies to the in vivo situation. Using a terminally redundant X-deficient HBV DNA construct, transgenic mice were established that exhibited high-level expression of the viral core protein in liver and kidneys. Importantly, replicative DNA intermediates and mature viral genomes could be detected in the liver and serum of these mice, respectively. These findings indicate that, in the in vivo model of transgenic mice, the HBV X (HBx) gene product is not required for HBV replication and virion secretion.


2015 ◽  
Vol 41 (08) ◽  
Author(s):  
C Klein ◽  
CT Bock ◽  
H Wedemeyer ◽  
T Wüstefeld ◽  
S Locarnini ◽  
...  

2012 ◽  
Vol 23 (3) ◽  
pp. 278-285 ◽  
Author(s):  
Feng-Jun Liu ◽  
En-Qiang Chen ◽  
Qiao-Ling Zhou ◽  
Tao-You Zhou ◽  
Cong Liu ◽  
...  

1989 ◽  
Vol 29 (4) ◽  
pp. 244-248 ◽  
Author(s):  
Hideaki Haritani ◽  
Toshikazu Uchida ◽  
Yasunori Okuda ◽  
Toshio Shikata

2006 ◽  
Vol 80 (3) ◽  
pp. 1405-1413 ◽  
Author(s):  
Zongyi Hu ◽  
Zhensheng Zhang ◽  
Jin Woo Kim ◽  
Ying Huang ◽  
T. Jake Liang

ABSTRACT Hepatitis B virus X (HBX) is essential for the productive infection of hepatitis B virus (HBV) in vivo and has a pleiotropic effect on host cells. We have previously demonstrated that the proteasome complex is a cellular target of HBX, that HBX alters the proteolytic activity of proteasome in vitro, and that inhibition of proteasome leads to enhanced viral replication, suggesting that HBX and proteasome interaction plays a crucial role in the life cycle and pathogenesis of HBV. In the present study, we tested the effect of HBX on the proteasome activities in vivo in a transgenic mouse model in which HBX expression is developmentally regulated by the mouse major urinary promoter in the liver. In addition, microarray analysis was performed to examine the effect of HBX expression on the global gene expression profile of the liver. The results showed that the peptidase activities of the proteasome were reduced in the HBX transgenic mouse liver, whereas the activity of another cellular protease was elevated, suggesting a compensatory mechanism in protein degradation. In the microarray analysis, diverse genes were altered in the HBX mouse livers and the number of genes with significant changes increased progressively with age. Functional clustering showed that a number of genes involved in transcription and cell growth were significantly affected in the HBX mice, possibly accounting for the observed pleiotropic effect of HBX. In particular, insulin-like growth factor-binding protein 1 was down-regulated in the HBX mouse liver. The down-regulation was similarly observed during acute woodchuck hepatitis virus infection. Other changes including up-regulation of proteolysis-related genes may also contribute to the profound alterations of liver functions in HBV infection.


2001 ◽  
Vol 75 (1) ◽  
pp. 215-225 ◽  
Author(s):  
Fei Su ◽  
Christian N. Theodosis ◽  
Robert J. Schneider

ABSTRACT Chronic infection with hepatitis B virus (HBV) promotes a high level of liver disease and cancer in humans. The HBV HBx gene encodes a small regulatory protein that is essential for viral replication and is suspected to play a role in viral pathogenesis. HBx stimulates cytoplasmic signal transduction pathways, moderately stimulates a number of transcription factors, including several nuclear factors, and in certain settings sensitizes cells to apoptosis by proapoptotic stimuli, including tumor necrosis factor alpha (TNF-α) and etopocide. Paradoxically, HBx activates members of the NF-κB transcription factor family, some of which are antiapoptotic in function. HBx induces expression of Myc protein family members in certain settings, and Myc can sensitize cells to killing by TNF-α. We therefore examined the roles of NF-κB, c-Myc, and TNF-α in apoptotic killing of cells by HBx. RelA/NF-κB is shown to be induced by HBx and to suppress HBx-mediated apoptosis. HBx also induces c-Rel/NF-κB, which can promote apoptotic cell death in some contexts or block it in others. Induction of c-Rel by HBx was found to inhibit its ability to directly mediate apoptotic killing of cells. Thus, HBx induction of NF-κB family members masks its ability to directly mediate apoptosis, whereas ablation of NF-κB reveals it. Investigation of the role of Myc protein demonstrates that overexpression of Myc is essential for acute sensitization of cells to killing by HBx plus TNF-α. This study therefore defines a specific set of parameters which must be met for HBx to possibly contribute to HBV pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document