scholarly journals The Bovine Immunodeficiency Virus Rev Protein: Identification of a Novel Nuclear Import Pathway and Nuclear Export Signal among Retroviral Rev/Rev-Like Proteins

2012 ◽  
Vol 86 (9) ◽  
pp. 4892-4905 ◽  
Author(s):  
A. Gomez Corredor ◽  
D. Archambault
2020 ◽  
Author(s):  
Sebastian Samer ◽  
Rajeev Raman ◽  
Gregor Laube ◽  
Michael R. Kreutz ◽  
Anna Karpova

Abstract Jacob is a synapto-nuclear messenger protein that couples NMDAR activity to CREB-dependent gene expression. In this study, we investigated the nuclear distribution of Jacob and report a prominent targeting to the nuclear envelope that requires NMDAR activity and nuclear import. Immunogold electron microscopy revealed preferential association of Jacob with the inner nuclear membrane where it directly binds to LaminB1, an intermediate filament and core component of the inner nuclear membrane (INM). The association with INM is transient; it involves a functional nuclear export signal in Jacob and a canonical CRM1-/RanGTP-dependent export mechanism that defines the residing time of the protein at the INM. Taken together, the data suggest a stepwise redistribution of Jacob within the nucleus following nuclear import and prior to nuclear export.


1996 ◽  
Vol 109 (9) ◽  
pp. 2239-2251 ◽  
Author(s):  
M. Dundr ◽  
G.H. Leno ◽  
N. Lewis ◽  
D. Rekosh ◽  
M.L. Hammarskjoid ◽  
...  

The HIV-1 Rev protein localizes predominantly to the nucleolus of HIV-1-infected or Rev-expressing cells. The subcellular location of Rev during mitotic nucleolar disintegration was examined at various stages of mitosis in synchronized Rev-expressing CMT3 cells. During early prophase Rev was predominantly located in disintegrating nucleoli and began to accumulate at the peripheral regions of chromosomes in late prophase, eventually distributing uniformly on all chromosomes in prometaphase. In anaphase Rev remained associated with the perichromosomal regions, but significant amounts of Rev were also seen in numerous nucleolus-derived foci. The movement of Rev from disintegrating nucleoli to perichromosomal regions and foci was similar to that of nonribosomal nucleolar proteins, including fibrillarin, nucleolin, protein B23 and p52 of the granular component. During telophase Rev remained associated with perichromosomal regions and mitotic foci until the nuclear envelope started to reform. When nuclear envelope formation was complete in late telophase, nonribosomal nucleolar proteins were present in prenucleolar bodies (PNBs) which were eventually incorporated into nucleoli; at the same time, Rev was excluded from nuclei. In contrast, a trans-dominant negative Rev protein containing an inactive nuclear export signal reentered nuclei by the nonribosomal nucleolar protein pathway in late telophase, associating with PNBs and reformed nucleoli. Rev protein reentry into postmitotic nuclei was delayed until early G1 phase, but before the arrival of ribosomal protein S6. Thus, Rev behaves like a nonribosomal nucleolar protein through mitosis until early telophase; however, its nuclear reentry seems to require reestablishment of both a nuclear import system and active nucleoli.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Ryan T. Behrens ◽  
Mounavya Aligeti ◽  
Ginger M. Pocock ◽  
Christina A. Higgins ◽  
Nathan M. Sherer

ABSTRACT HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.


2009 ◽  
Vol 83 (24) ◽  
pp. 12842-12853 ◽  
Author(s):  
Andrea Gomez Corredor ◽  
Denis Archambault

ABSTRACT The bovine immunodeficiency virus (BIV) Rev protein (186 amino acids [aa] in length) is involved in the nuclear exportation of partially spliced and unspliced viral RNAs. Previous studies have shown that BIV Rev localizes in the nucleus and nucleolus of infected cells. Here we report the characterization of the nuclear/nucleolar localization signals (NLS/NoLS) of this protein. Through transfection of a series of deletion mutants of BIV Rev fused to enhanced green fluorescent protein and fluorescence microscopy analyses, we were able to map the NLS region between aa 71 and 110 of the protein. Remarkably, by conducting alanine substitution of basic residues within the aa 71 to 110 sequence, we demonstrated that the BIV Rev NLS is bipartite, maps to aa 71 to 74 and 95 to 101, and is predominantly composed of arginine residues. This is the first report of a bipartite Rev (or Rev-like) NLS in a lentivirus/retrovirus. Moreover, this NLS is atypical, as the length of the sequence between the motifs composing the bipartite NLS, e.g., the spacer sequence, is 20 aa. Further mutagenesis experiments also identified the NoLS region of BIV Rev. It localizes mainly within the NLS spacer sequence. In addition, the BIV Rev NoLS sequence differs from the consensus sequence reported for other viral and cellular nucleolar proteins. In summary, we conclude that the nucleolar and nuclear localizations of BIV Rev are mediated via novel NLS and NoLS motifs.


2000 ◽  
Vol 74 (14) ◽  
pp. 6684-6688 ◽  
Author(s):  
Claudia Rabino ◽  
Anders Aspegren ◽  
Kara Corbin-Lickfett ◽  
Eileen Bridge

ABSTRACT Adenovirus late mRNA export is facilitated by viral early proteins of 55 and 34 kDa. The 34-kDa protein contains a leucine-rich nuclear export signal (NES) similar to that of the human immunodeficiency virus Rev protein. It was proposed that the 34-kDa protein might facilitate the export of adenovirus late mRNA through a Rev-like NES-mediated export pathway. We have tested the role of NES-mediated RNA export during adenovirus infection, and we find that it is not essential for the expression of adenovirus late genes.


1998 ◽  
Vol 143 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Andrea Herold ◽  
Ray Truant ◽  
Heather Wiegand ◽  
Bryan R. Cullen

Although importin α (Imp α) has been shown to act as the receptor for basic nuclear localization signals (NLSs) and to mediate their recruitment to the importin β nuclear import factor, little is known about the functional domains present in Imp α, with the exception that importin β binding is known to map close to the Imp α NH2 terminus. Here, we demonstrate that sequences essential for binding to the CAS nuclear export factor are located near the Imp α COOH terminus and include a critical acidic motif. Although point mutations introduced into this acidic motif inactivated both CAS binding and Imp α nuclear export, a putative leucine-rich nuclear export signal proved to be neither necessary nor sufficient for Imp α nuclear export. Analysis of sequences within Imp α that bind to the SV-40 T antigen NLS or to the similar LEF-1 NLS revealed that both NLSs interact with a subset of the eight degenerate armadillo (Arm) repeats that form the central part of Imp α. However, these two NLS-binding sites showed only minimal overlap, thus suggesting that the degeneracy of the Arm repeat region of Imp α may serve to facilitate binding to similar but nonidentical basic NLSs. Importantly, the SV-40 T NLS proved able to specifically inhibit the interaction of Imp α with CAS in vitro, thus explaining why the SV-40 T NLS is unable to also function as a nuclear export signal.


Sign in / Sign up

Export Citation Format

Share Document