Amount and distribution of virus-specific sequences in giant RNA molecules isolated from polyoma-infected mouse kidney cells.

1977 ◽  
Vol 21 (3) ◽  
pp. 831-842 ◽  
Author(s):  
Z Lev ◽  
H Manor
1992 ◽  
Vol 202 (2) ◽  
pp. 464-470 ◽  
Author(s):  
Edward W. Khandjian ◽  
Consuelo Salomon ◽  
Nicole Léonard ◽  
Sandra Tremblay ◽  
Hans Türler

1975 ◽  
Vol 16 (5) ◽  
pp. 1095-1100 ◽  
Author(s):  
U Wintersberger ◽  
E Wintersberger

Intervirology ◽  
1976 ◽  
Vol 7 (4-5) ◽  
pp. 201-210 ◽  
Author(s):  
Bertram Flehmig ◽  
Angelika Vallbracht ◽  
Hans-Joachim Gerth

2004 ◽  
Vol 15 (11) ◽  
pp. 5172-5186 ◽  
Author(s):  
Moe R. Mahjoub ◽  
M. Qasim Rasi ◽  
Lynne M. Quarmby

Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression.


2010 ◽  
pp. P2-27-P2-27
Author(s):  
RE Forster ◽  
CL Lowmiller ◽  
GK Whitfield ◽  
CA Haussler ◽  
PW Jurutka ◽  
...  

1992 ◽  
Vol 70 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Timothy M. Rose ◽  
Sandra Tremblay ◽  
Edward W. Khandjian

The pattern of [35S]methionine-labeled proteins from primary cultures of mouse kidney epithelial cells arrested in G0 phase was analyzed by two-dimensional gel electrophoresis and compared with that observed from cultures of actively proliferating and SV40-transformed mouse kidney cells. A major polypeptide (p65) migrating with a molecular mass of 65 000 daltons and a pI of 5.8 was detected in quiescent cultures of cells which had exhausted their finite division potential. Under the experimental conditions used, these cells had lost sensitivity to growth factors and were irreversibly blocked in G0 phase of the cell cycle. In cultures of actively proliferating mouse kidney cells, the expression of p65 was not observed until just prior to arrest. Moreover, proliferating cultures of immortalized mouse kidney cells that had been reactivated from their quiescent state by infection with SV40 did not express p65. Subcellular localization studies suggest that p65 is associated with the crude nuclear fraction. In addition, p65 is glycosylated and binds the lectin concanavalin A. Pulse–chase experiments demonstrated that p65 was short lived with an estimated half life of 10 min. Thus, p65 appears to be a growth-arrest specific gene product whose expression is repressed during the proliferative state of mitotically active mouse kidney cells.Key words: G0 phase, senescence, proliferation, quiescence, SV40-transformed mouse cells.


Sign in / Sign up

Export Citation Format

Share Document