infected mouse
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 29)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jie Pei ◽  
Yueming Yuan ◽  
Dayong Tian ◽  
Fei Huang ◽  
Chengguang Zhang ◽  
...  

Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.


Author(s):  
Manuel Salzmann ◽  
Patrick Haider ◽  
Roberto Plasenzotti ◽  
Johann Wojta ◽  
Philipp Hohensinner
Keyword(s):  

Author(s):  
Nana Wei ◽  
Jie Cao ◽  
Houshuang Zhang ◽  
Yongzhi Zhou ◽  
Jinlin Zhou

Ticks are obligate hematophagous ectoparasites. They are important vectors for many pathogens, of both medical and veterinary importance. Antibiotic residues in animal food are known, but very little is known about the effects of antibiotic residues in animals on the microbiome diversity of ticks and tick-borne pathogen transmission. We used a Haemaphysalis longicornis–infested mouse model to evaluate the effect of antibiotic usage on tick microbiome. Nymphal ticks were fed on an antibiotic cocktail-treated or water control mice. Adult ticks molted from nymphs fed on the antibiotic cocktail-treated mouse had a dysbiosed microbiota. Nymphal ticks were also fed on a B. microti–infected mice that had been treated with antibiotic cocktail or water. We found that the B. microti infection in adult ticks with a dysbiosed microbiota (44.7%) was increased compared with the control adult ticks (24.2%) by using qPCR targeting 18S rRNA gene. This may increase the risk of tick-borne pathogens (TBPs) transmission from adult ticks to a vertebrate host. These results show that an antibiotic-treated mouse can induce tick microbiota dysbiosis. Antibiotic treatment of B. microti-infected mouse poses the possibility of increasing transstadial transmission of B. microti from the nymph to the adult H. longicornis. These findings suggest that B. microti transmission may be exacerbated in high antibiotic usage areas.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 559
Author(s):  
Tipparat Thiangtrongjit ◽  
Nattapon Simanon ◽  
Poom Adisakwattana ◽  
Yanin Limpanont ◽  
Phiraphol Chusongsang ◽  
...  

Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development.


Author(s):  
Bei Li ◽  
Meiling Chen ◽  
Adriano Aguzzi ◽  
Caihong Zhu

Abstract The progression of prion diseases is accompanied by the accumulation of prions in the brain. Ablation of microglia enhances prion accumulation and accelerates disease progression, suggesting that microglia play a neuroprotective role by clearing prions. However, the mechanisms underlying the phagocytosis and clearance of prion are largely unknown. The macrophage scavenger receptor 1 (Msr1) is an important phagocytic receptor expressed by microglia in the brain and is involved in the uptake and clearance of soluble amyloid-β. We therefore asked whether Msr1 might play a role in prion clearance and assessed the scavenger function of Msr1 in prion pathogenesis. We found that Msr1 expression was upregulated in prion-infected mouse brains. However, Msr1 deficiency did not change prion disease progression or lesion patterns. Prion deposition in Msr1 deficient mice was similar to their wild-type littermates. In addition, prion-induced neuroinflammation was not affected by Msr1 ablation. We conclude that Msr1 does not play a major role in prion pathogenesis. Key messages Msr1 expression is upregulated in prion-infected mouse brains at the terminal stage Msr1 deficiency does not affect prion disease progression Msr1 does not play a major role in prion clearance or prion pathogenesis Microglia-mediated phagocytosis and clearance of Aβ and prion may adopt distinct molecular pathways


2021 ◽  
Vol 80 ◽  
pp. 102231
Author(s):  
Ho Yin Pekkle Lam ◽  
Cheng-Chi Chen ◽  
Tina Tu-Wen Chen ◽  
Kai-Chih Chang ◽  
Wen-Jui Wu ◽  
...  

2021 ◽  
Author(s):  
Bryan B. Guzman ◽  
Amanda P. Schauer ◽  
John A. Dunn ◽  
Mackenzie L. Cottrell ◽  
Craig Sykes
Keyword(s):  

2021 ◽  
Vol 61 (2) ◽  
pp. 090-094
Author(s):  
Hiroshi UEKI ◽  
Yoshihiro KAWAOKA

mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Jakub Novák ◽  
David Jurnečka ◽  
Irena Linhartová ◽  
Jana Holubová ◽  
Ondřej Staněk ◽  
...  

ABSTRACT The BvgS/BvgA two-component system controls expression of ∼550 genes of Bordetella pertussis, of which, ∼245 virulence-related genes are positively regulated by the BvgS-phosphorylated transcriptional regulator protein BvgA (BvgA∼P). We found that a single G-to-T nucleotide transversion in the 5′-untranslated region (5′-UTR) of the rplN gene enhanced transcription of the ribosomal protein operon and of the rpoA gene and provoked global dysregulation of B. pertussis genome expression. This comprised overproduction of the alpha subunit (RpoA) of the DNA-dependent RNA polymerase, downregulated BvgA and BvgS protein production, and impaired production and secretion of virulence factors by the mutant. Nonetheless, the mutant survived like the parental bacteria for >2 weeks inside infected primary human macrophages and persisted within infected mouse lungs for a longer period than wild-type B. pertussis. These observations suggest that downregulation of virulence factor production by bacteria internalized into host cells may enable persistence of the whooping cough agent in the airways. IMPORTANCE We show that a spontaneous mutation that upregulates transcription of an operon encoding ribosomal proteins and causes overproduction of the downstream-encoded α subunit (RpoA) of RNA polymerase causes global effects on gene expression levels and proteome composition of Bordetella pertussis. Nevertheless, the resulting important downregulation of the BvgAS-controlled expression of virulence factors of the whooping cough agent did not compromise its capacity to persist for prolonged periods inside primary human macrophage cells, and it even enhanced its capacity to persist in infected mouse lungs. These observations suggest that the modulation of BvgAS-controlled expression of virulence factors may occur also during natural infections of human airways by Bordetella pertussis and may possibly account for long-term persistence of the pathogen within infected cells of the airways.


Sign in / Sign up

Export Citation Format

Share Document