scholarly journals In vitro replication of Sendai virus wild-type and defective interfering particle genome RNAs.

1985 ◽  
Vol 54 (2) ◽  
pp. 493-500 ◽  
Author(s):  
S R Carlsen ◽  
R W Peluso ◽  
S A Moyer
2009 ◽  
Vol 84 (2) ◽  
pp. 810-821 ◽  
Author(s):  
Laura E. Luque ◽  
Olga A. Bridges ◽  
John N. Mason ◽  
Kelli L. Boyd ◽  
Allen Portner ◽  
...  

ABSTRACT While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.


2021 ◽  
Author(s):  
Katherine E Zarn ◽  
Sierra A Jaramillo ◽  
Anthony R Zapata ◽  
Nathan E Stone ◽  
Ashley N Jones ◽  
...  

We recently published a preliminary assessment of the activity of a poly (ADP-ribose) polymerase (PARP) inhibitor, stenoparib, also known as 2X-121, which inhibits viral replication by affecting pathways of the host. Stenoparib is an inhibitor of mammalian poly (ADP-ribose) polymerases (PARPs). Here we show that stenoparib effectively inhibits additional SARS-CoV-2 variants, including an additional wild-type strain (Germany/BavPat1/2020), and the variants alpha (B.1.1.7), beta (B.1.351) and gamma (P.1) in vitro, with 50% effective concentration (EC50) estimates of 4.1 μM, 8.5 μM, 24.2 μM and 13.6 μM, respectively. A second study focusing on a combination of 10 μM stenoparib and 0.5 µM remdesivir resulted in over 90% inhibition of the alpha (B.1.1.7) variant, which is substantially greater than what was achieved with stenoparib or remdesivir alone at these concentrations.


1999 ◽  
Vol 73 (8) ◽  
pp. 6474-6483 ◽  
Author(s):  
Mary Catherine Bowman ◽  
Sherin Smallwood ◽  
Sue A. Moyer

ABSTRACT The Sendai virus P protein is an essential component of the viral RNA polymerase (P-L complex) required for RNA synthesis. To identify amino acids important for P-L binding, site-directed mutagenesis of the P gene changed 17 charged amino acids, singly or in groups, and two serines to alanine within the L binding domain from amino acids 408 to 479. Each of the 10 mutants was wild type for P-L and P-P protein interactions and for binding of the P-L complex to the nucleocapsid template, yet six showed a significant inhibition of in vitro mRNA and leader RNA synthesis. To determine if binding was instead hydrophobic in nature, five conserved hydrophobic amino acids in this region were also mutated. Each of these P mutants also retained the ability to bind to L, to itself, and to the template, but two gave a severe decrease in mRNA and leader RNA synthesis. Since all of the mutants still bound L, the data suggest that L binding occurs on a surface of P with a complex tertiary structure. Wild-type biological activity could be restored for defective polymerase complexes containing two P mutants by the addition of wild-type P protein alone, while the activity of two others could not be rescued. Gradient sedimentation analyses showed that rescue was not due to exchange of the wild-type and mutant P proteins within the P-L complex. Mutants which gave a defective RNA synthesis phenotype and could not be rescued by P establish an as-yet-unknown role for P within the polymerase complex, while the mutants which could be rescued define regions required for a P protein function independent of polymerase function.


1999 ◽  
Vol 73 (12) ◽  
pp. 10551-10555 ◽  
Author(s):  
Armin Ensser ◽  
André Pfinder ◽  
Ingrid Müller-Fleckenstein ◽  
Bernhard Fleckenstein

ABSTRACT The herpesvirus saimiri strain C488 genome contains five genes for small nuclear RNAs, termed herpesvirus saimiri URNAs (or HSURs). Using a cosmid-based approach, all HSURs were precisely deleted from the genome. The mutant virus replicated at levels that were similar to those of wild-type viruses in OMK cells. Although the HSURs are expressed in wild-type virus-transformed human T-cell lines, the deletion does not affect viral transformation in cell culture.


Sign in / Sign up

Export Citation Format

Share Document