scholarly journals Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro.

1992 ◽  
Vol 66 (8) ◽  
pp. 4901-4908 ◽  
Author(s):  
S M Horikami ◽  
J Curran ◽  
D Kolakofsky ◽  
S A Moyer
2002 ◽  
Vol 76 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Jeffery Tuckis ◽  
Sherin Smallwood ◽  
Joyce A. Feller ◽  
Sue A. Moyer

ABSTRACT The Sendai virus P-L polymerase complex binds the NP-encapsidated nucleocapsid (NC) template through a P-NP interaction. To identify P amino acids responsible for binding we performed site-directed mutagenesis on the C-terminal 88 amino acids in the NC binding domain. The mutant P proteins expressed from plasmids were assayed for viral RNA synthesis and for various protein-protein interactions. All the mutants formed P oligomers and bound to L protein. While two mutants, JT3 and JT8, retained all P functions at or near the levels of wild-type (wt) P, three others—JT4, JT6, and JT9—were completely defective for both transcription and genome replication in vitro. Each of the inactive mutants retained significant NC binding but had a different spectrum of other binding interactions and activities, suggesting that the NC binding domain also affects the catalytic function of the polymerase. NC binding was inhibited by combinations of the inactive mutations. The remaining P mutants were active in transcription but defective in various aspects of genome replication. Some P mutants were defective in NP0 binding and abolished the reconstitution of replication from separate P-L and NP0-P complexes. In some of these cases the coexpression of the wt polymerase with the mutant NP0-P complex could rescue the defect in replication, suggesting an interaction between these complexes. For some P mutants replication occurred in vivo, but not in vitro, suggesting that the intact cell is providing an unknown function that cannot be reproduced in extracts of cells. Thus, the C-terminal region of P is complex and possesses multiple functions besides NC binding that can be separated by mutation.


2020 ◽  
Vol 2 (12) ◽  
pp. 5777-5789
Author(s):  
Ranjeet Dungdung ◽  
Manikanta Bayal ◽  
Lathika Valliyott ◽  
Unnikrishnan Unniyampurath ◽  
Swapna S. Nair ◽  
...  

The graphical abstract represents the synthesis of size engineered ZnS QDs for conjugating anti-viral drug (MPA) and its safe and effective delivery against cytoplasmically replicating dengue virus 2.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Na Zhang ◽  
Hong Shan ◽  
Mingdong Liu ◽  
Tianhao Li ◽  
Rui Luo ◽  
...  

AbstractParamyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.


1995 ◽  
Vol 108 (6) ◽  
pp. 2187-2196 ◽  
Author(s):  
L.J. Wangh ◽  
D. DeGrace ◽  
J.A. Sanchez ◽  
A. Gold ◽  
Y. Yeghiazarians ◽  
...  

Rapid genome replication is one of the hallmarks of the frog embryonic cell cycle. We report here that complete reactivation of quiescent somatic cell nuclei in Xenopus egg extracts depends on prior restructuring of the nuclear substrate and prior preparation of cytoplasmic extract with the highest capacity to initiate and sustain DNA synthesis. Nuclei from mature erythrocytes swell, replicate their DNA efficiently, and enter mitosis in frozen/thawed extracts prepared from activated Xenopus eggs, provided the nuclei are first treated with trypsin, heparin, and an extract prepared from unactivated, meiotically arrested, eggs. Optimal replicating extracts are prepared from large batches of unfertilized eggs that are synchronously activated into the cell cycle for 28 minutes (at 20 degrees C). Because the Xenopus cell cycle progresses so rapidly, extracts prepared just a few minutes before or after this time have substantially lower DNA synthetic capacities. At the optimal time and temperature, eggs have just reached the G1/S boundary of the first cell cycle. This fact was revealed by injecting and replicating an SV40 plasmid in intact unfertilized eggs as described previously. We estimate that under optimal conditions approximately 6.14 × 10(9) base pairs of DNA/per nucleus are synthesized in 30–40 minutes, a rate that rivals that observed in the zygotic nucleus. The findings reported here are one step in our long term effort to develop a new in vitro/in vivo approach to nuclear transplantation. Nuclear transplantation in amphibian embryos has been used to establish that the genomes of many types of differentiated somatic cells are pluripotent. But very few such nuclei have ever developed into advanced tadpoles or adult frogs, probably because somatic nuclei injected directly into activated eggs fail to reactivate quickly enough to avoid being damaged during first mitosis. We have already shown that unfertilized eggs can be injected prior to activation of the first cell cycle. Future experiments will reveal whether in vitro reactivated somatic cell nuclei transplanted into such eggs reliably reach advanced stages of development.


Development ◽  
1982 ◽  
Vol 71 (1) ◽  
pp. 215-221
Author(s):  
Andrzej K. Tarkowski ◽  
Marie Wojewodzka

Pairs of zona-free mouse blastocysts aggregated in the presence of inactivated Sendai virus and subsequently cultured in vitro will fuse to form a chimaeric blastocyst with one common blastocoelic cavity. Depending on the relative position of the inner cell masses in the apposed ‘parental’ blastocysts, the resulting chimaeric blastocyst contains either a single inner cell mass (ICM) of dual origin or two discrete ICMs each originating from one embryo. In the present experiments, fusion between the two aggregated blastocysts occurred in 23% of the pairs and 64% of these chimaeric blastocysts contained two ICMs. Blastocysts of the latter type could potentially give rise to pairs of embryos which as regards the topography of the foetal membrane would resemble spontaneous identical twins, although they would be genetically dissimilar. Possible applications of the described method are discussed.


1996 ◽  
Vol 77 (10) ◽  
pp. 2465-2469 ◽  
Author(s):  
T. Pelet ◽  
J.-B. Marq ◽  
Y. Sakai ◽  
S. Wakao ◽  
H. Gotoh ◽  
...  

2019 ◽  
Vol 4 ◽  
pp. 82 ◽  
Author(s):  
Harriet V. Mears ◽  
Edward Emmott ◽  
Yasmin Chaudhry ◽  
Myra Hosmillo ◽  
Ian G. Goodfellow ◽  
...  

Background: Norovirus, also known as the winter vomiting bug, is the predominant cause of non-bacterial gastroenteritis worldwide. Disease control is predicated on a robust innate immune response during the early stages of infection. Double-stranded RNA intermediates generated during viral genome replication are recognised by host innate immune sensors in the cytoplasm, activating the strongly antiviral interferon gene programme. Ifit proteins (interferon induced proteins with tetratricopeptide repeats), which are highly expressed during the interferon response, have been shown to directly inhibit viral protein synthesis as well as regulate innate immune signalling pathways. Ifit1 is well-characterised to inhibit viral translation by sequestration of eukaryotic initiation factors or by directly binding to the 5' terminus of foreign RNA, particularly those with non-self cap structures. However, noroviruses have a viral protein, VPg, covalently linked to the 5' end of the genomic RNA, which acts as a cap substitute to recruit the translation initiation machinery. Methods: Ifit1 knockout RAW264.7 murine macrophage-like cells were generated using CRISPR-Cas9 gene editing. These cells were analysed for their ability to support murine norovirus infection, determined by virus yield, and respond to different immune stimuli, assayed by quantitative PCR. The effect of Ifit proteins on norovirus translation was also tested in vitro. Results: Here, we show that VPg-dependent translation is completely refractory to Ifit1-mediated translation inhibition in vitro and Ifit1 cannot bind the 5' end of VPg-linked RNA. Nevertheless, knockout of Ifit1 promoted viral replication in murine norovirus infected cells. We then demonstrate that Ifit1 promoted interferon-beta expression following transfection of synthetic double-stranded RNA but had little effect on toll-like receptor 3 and 4 signalling. Conclusions: Ifit1 is an antiviral factor during norovirus infection but cannot directly inhibit viral translation. Instead, Ifit1 stimulates the antiviral state following cytoplasmic RNA sensing, contributing to restriction of norovirus replication.


2009 ◽  
Vol 83 (10) ◽  
pp. 5137-5147 ◽  
Author(s):  
Hiromichi Hara ◽  
Hideki Aizaki ◽  
Mami Matsuda ◽  
Fumiko Shinkai-Ouchi ◽  
Yasushi Inoue ◽  
...  

ABSTRACT Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.


1980 ◽  
Vol 152 (6) ◽  
pp. 1805-1810 ◽  
Author(s):  
J P Lake ◽  
M E Andrew ◽  
C W Pierce ◽  
T J Braciale

The in vitro secondary cytotoxic T lymphocyte (CTL) response to Sendai virus-treated stimulator cells by primed spleen cells from thymus gland-grafted nude mice was examined. BALB/c (H-2d) nude mice grafted with allogeneic C57BL/10 (H-2b) thymus glands developed CTL responses directed exclusively to Sendai virus-infected H-2d target cells. (C57BL/6 X BALB/c)F1 nude mice grafted with thymus glands of either parent developed CTL responses preferentially against infected target cells expressing the MHC antigens present in the parental thymus graft, but also had detectable activity for infected target cells of the parental haplotype not expressed in the thymus. These results provide evidence against the concept that self recognition by MHC-restricted CTL is directed exclusively by the MCH type of the thymus.


Sign in / Sign up

Export Citation Format

Share Document