scholarly journals Functional and antigenic domains of the matrix (M1) protein of influenza A virus.

1987 ◽  
Vol 61 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Z P Ye ◽  
R Pal ◽  
J W Fox ◽  
R R Wagner
2009 ◽  
Vol 11 (5) ◽  
pp. 730-741 ◽  
Author(s):  
Xiaoling Liu ◽  
Lei Sun ◽  
Maorong Yu ◽  
Zengfu Wang ◽  
Chongfeng Xu ◽  
...  

2018 ◽  
Vol 37 (3) ◽  
pp. 671-690 ◽  
Author(s):  
Larisa V. Kordyukova ◽  
Eleonora V. Shtykova ◽  
Lyudmila A. Baratova ◽  
Dmitri I. Svergun ◽  
Oleg V. Batishchev

2019 ◽  
Vol 7 (9) ◽  
pp. 334 ◽  
Author(s):  
Christine L. Densmore ◽  
Deborah D. Iwanowicz ◽  
Shawn M. McLaughlin ◽  
Christopher A. Ottinger ◽  
Jason E. Spires ◽  
...  

We evaluated the prevalence of influenza A virus (IAV) in different species of bivalves inhabiting natural water bodies in waterfowl habitat along the Delmarva Peninsula and Chesapeake Bay in eastern Maryland. Bivalve tissue from clam and mussel specimens (Macoma balthica, Macoma phenax, Mulinia sp., Rangia cuneata, Mya arenaria, Guekensia demissa, and an undetermined mussel species) from five collection sites was analyzed for the presence of type A influenza virus by qPCR targeting the matrix gene. Of the 300 tissue samples analyzed, 13 samples (4.3%) tested positive for presence of influenza virus A matrix gene. To our knowledge, this is the first report of detection of IAV in the tissue of any bivalve mollusk from a natural water body.


2010 ◽  
Vol 84 (9) ◽  
pp. 4673-4681 ◽  
Author(s):  
Dan Wang ◽  
Aaron Harmon ◽  
Jing Jin ◽  
David H. Francis ◽  
Jane Christopher-Hennings ◽  
...  

ABSTRACT The matrix protein (M1) of influenza A virus is generally viewed as a key orchestrator in the release of influenza virions from the plasma membrane during infection. In contrast to this model, recent studies have indicated that influenza virus requires expression of the envelope proteins for budding of intracellular M1 into virus particles. Here we explored the mechanisms that control M1 budding. Similarly to previous studies, we found that M1 by itself fails to form virus-like-particles (VLPs). We further demonstrated that M1, in the absence of other viral proteins, was preferentially targeted to the nucleus/perinuclear region rather than to the plasma membrane, where influenza virions bud. Remarkably, we showed that a 10-residue membrane targeting peptide from either the Fyn or Lck oncoprotein appended to M1 at the N terminus redirected M1 to the plasma membrane and allowed M1 particle budding without additional viral envelope proteins. To further identify a functional link between plasma membrane targeting and VLP formation, we took advantage of the fact that M1 can interact with M2, unless the cytoplasmic tail is absent. Notably, native M2 but not mutant M2 effectively targeted M1 to the plasma membrane and produced extracellular M1 VLPs. Our results suggest that influenza virus M1 may not possess an inherent membrane targeting signal. Thus, the lack of efficient plasma membrane targeting is responsible for the failure of M1 in budding. This study highlights the fact that interactions of M1 with viral envelope proteins are essential to direct M1 to the plasma membrane for influenza virus particle release.


2000 ◽  
Vol 74 (24) ◽  
pp. 11538-11547 ◽  
Author(s):  
Paulino Gómez-Puertas ◽  
Carmen Albo ◽  
Esperanza Pérez-Pastrana ◽  
Amparo Vivo ◽  
Agustı́n Portela

ABSTRACT To get insights into the role played by each of the influenza A virus polypeptides in morphogenesis and virus particle assembly, the generation of virus-like particles (VLPs) has been examined in COS-1 cell cultures expressing, from recombinant plasmids, different combinations of the viral structural proteins. The presence of VLPs was examined biochemically, following centrifugation of the supernatants collected from transfected cells through sucrose cushions and immunoblotting, and by electron-microscopic analysis. It is demonstrated that the matrix (M1) protein is the only viral component which is essential for VLP formation and that the viral ribonucleoproteins are not required for virus particle formation. It is also shown that the M1 protein, when expressed alone, assembles into virus-like budding particles, which are released in the culture medium, and that the recombinant M1 protein accumulates intracellularly, forming tubular structures. All these results are discussed with regard to the roles played by the virus polypeptides during virus assembly.


2006 ◽  
Vol 80 (16) ◽  
pp. 8178-8189 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The cytoplasmic tail of the influenza A virus M2 protein is highly conserved among influenza A virus isolates. The cytoplasmic tail appears to be dispensable with respect to the ion channel activity associated with the protein but important for virus morphology and the production of infectious virus particles. Using reverse genetics and transcomplementation assays, we demonstrate that the M2 protein cytoplasmic tail is a crucial mediator of infectious virus production. Truncations of the M2 cytoplasmic tail result in a drastic decrease in infectious virus titers, a reduction in the amount of packaged viral RNA, a decrease in budding events, and a reduction in budding efficiency. The M1 protein binds to the M2 cytoplasmic tail, but the M1 binding site is distinct from the sequences that affect infectious virus particle formation. Influenza A virus strains A/Udorn/72 and A/WSN/33 differ in their requirements for M2 cytoplasmic tail sequences, and this requirement maps to the M1 protein. We conclude that the M2 protein is required for the formation of infectious virus particles, implicating the protein as important for influenza A virus assembly in addition to its well-documented role during virus entry and uncoating.


2013 ◽  
Vol 87 (11) ◽  
pp. 6182-6191 ◽  
Author(s):  
S. Wang ◽  
Z. Zhao ◽  
Y. Bi ◽  
L. Sun ◽  
X. Liu ◽  
...  

2009 ◽  
Vol 16 (11) ◽  
pp. 1407-1413 ◽  
Author(s):  
Alexander Shishkov ◽  
Elena Bogacheva ◽  
Alexey Dolgov ◽  
Alexey Chulichkov ◽  
Denis Knyazev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document