survival pathway
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 43)

H-INDEX

57
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Sarah Rose Anderson ◽  
Jacqueline M Roberts ◽  
Nate Ghena ◽  
Emmalyn Irvin ◽  
Joon Schwakopf ◽  
...  

Microglia serve critical remodeling roles that shape the developing nervous system, responding to the changing neural environment with phagocytosis or soluble factor secretion. Recent single-cell sequencing (scRNAseq) studies have revealed the context-dependent diversity in microglial properties and gene expression, but the cues promoting this diversity are not well defined. Here, we ask how interactions with apoptotic neurons shape microglial state, including lysosomal and lipid metabolism gene expression and independence from Colony-stimulating factor 1 receptor (CSF1R) for survival. Using early postnatal mouse retina, a CNS region undergoing significant developmental remodeling, we performed scRNAseq on microglia from mice that are wild-type, lack neuronal apoptosis (Bax KO), or are treated with CSF1R inhibitor (PLX3397). We find that interactions with apoptotic neurons drives multiple microglial remodeling states, subsets of which are resistant to CSF1R inhibition. We find that TAM receptor Mer and complement receptor 3 are required for clearance of apoptotic neurons, but that Mer does not drive expression of remodeling genes. We show TAM receptor Axl is negligible for phagocytosis or remodeling gene expression but is consequential for microglial survival in the absence of CSF1R signaling. Thus, interactions with apoptotic neurons shift microglia towards distinct remodeling states and through Axl, alters microglial dependence on survival pathway, CSF1R.


2021 ◽  
Author(s):  
Sharmila Biswas ◽  
Baishakhi Tikader ◽  
Sandip Kar ◽  
Ganesh Viswanathan

AbstractTumor necrosis factor alpha (TNFα), a pleiotropic cytokine, helps maintain a balance between proliferation and apoptosis in normal cells. This balance is often sacrificed in a diseased cell, such as that of a cancer, by preferring survival phenotype over apoptosis. Restoring this balance requires a detailed understanding of the causal intracellular mechanisms that govern TNFα stimulated apoptotic response. In this study, we use a systems biology approach to unravel the interplay between the intracellular signaling markers that orchestrate apoptosis levels. Our approach deciphered the synergism between the early intracellular markers phosphorylated JNK (pJNK) and phosphorylated AKT (pAKT) that modulate the activation of Caspase3, an important apoptotic regulator. We demonstrate that this synergism depends critically on the survival pathway signaling mediated by NFκB which plays a dominant role in controlling the extent of the overall apoptotic response. By systematic inhibition of the signaling markers, we establish that the dynamic cross-talk between the pJNK and pAKT transients directs the apoptosis phenotype via accumulated Caspase3 response. Interestingly, superposition of the semi-quantitative correlation between apoptosis and Caspase3 transient levels on the proposed TNFα network model permits quantification of the dynamic apoptotic response under different stimulation conditions. Thus, the predictive model can be leveraged towards arriving at useful insights that can identify potential targeted therapeutic strategies for altering apoptotic response.


2021 ◽  
Vol 13 ◽  
Author(s):  
Min-Huang Hsieh ◽  
Zhen-Yang Cui ◽  
Ai-Lun Yang ◽  
Nguyen Thanh Nhu ◽  
Shih-Ying Ting ◽  
...  

This study aimed to investigate cerebral cortex apoptosis on the early aged hypertension and the effects of green tea flavonoid epigallocatechin-3-gallate (EGCG). Twenty-four rats were divided into three groups: a control Wistar-Kyoto group (WKY, n = 8), a spontaneously early aged hypertensive group (SHR, n = 8), and an early aged hypertension with EGCG treatment group (SHR-EGCG, n = 8; daily oral EGCG 200 mg/kg—94%, 12 weeks). At 48 weeks old, blood pressures (BPs) were evaluated and cerebral cortexes were isolated for TUNEL assay and Western blotting. Systolic, diastolic, and mean blood pressure levels in the SHR-EGCG were reduced compared to the SHR. The percentage of neural cell deaths, the levels of cytosolic Endonuclease G, cytosolic AIF (Caspase-independent apoptotic pathway), Fas, Fas Ligand, FADD, Caspase-8 (Fas-mediated apoptotic pathway), t-Bid, Bax/Bcl-2, Bak/Bcl-xL, cytosolic Cytochrome C, Apaf-1, Caspase-9 (Mitochondrial-mediated apoptotic pathway), and Caspase-3 (Fas-mediated and Mitochondria-mediated apoptotic pathways) were increased in the SHR relative to WKY and reduced in SHR-EGCG relative to SHR. In contrast, the levels of Bcl-2, Bcl-xL, p-Bad, 14-3-3, Bcl-2/Bax, Bcl-xL/Bak, and p-Bad/Bad (Bcl-2 family-related pro-survival pathway), as well as Sirt1, p-PI3K/PI3K and p-AKT/AKT (Sirt1/PI3K/AKT-related pro-survival pathway), were reduced in SHR relative WKY and enhanced in SHR-EGCG relative to SHR. In conclusion, green tea flavonoid epigallocatechin-3-gallate (EGCG) might prevent neural apoptotic pathways and activate neural survival pathways, providing therapeutic effects on early aged hypertension-induced neural apoptosis.


Author(s):  
Cynthia Marie Simbulan-Rosenthal ◽  
Yogameenakshi Haribabu ◽  
Sahar Vakili ◽  
Li-Wei Kuo ◽  
Havens Clark ◽  
...  

Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC), implicated in tumorigenesis, invasion, and drug resistance, and characterized by elevated expression of stem cell markers, such as CD133. We previously showed that siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. The current study investigates underlying mechanisms of CD133’s anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockdown or Dox-inducible expression of CD133. To maintain stable expression of CD133, MACS-sorted CD133(+) positive cells were expanded by ROCK-mediated conditional reprogramming of BAKP melanoma cells (BAKR). BAKR showed increased survival via reduced apoptosis after exposure to trametinib or DTIC, compared to BAKP. CRISPR-Cas9- mediated CD133 knockdown in BAKR cells (BAKR-T3) re-sensitized the cells, while CRISPR-Cas9 knockdown of CD133 in parental BAKP and POT cells even further increased trametinib-induced apoptosis (cleaved PARP) by reducing levels of anti-apoptotic BCL-xL, p-AKT, and p-BAD, and increasing pro-apoptotic BAD and active BAX. Dox-induced CD133 overexpression had the opposite effect, and blocked trametinib-induced apoptosis in both cell lines, coincident with elevated p-AKT, p-BAD, BCL-2 and BCL-xL and decreased levels of the active form of BAX and caspases-3 and -9. The roles of CD133 in AKT and BAD phosphorylation, or in the upregulation of anti-apoptotic BCL-2 family members, was further investigated by AKT knockout with siRNA, or inhibition of BCL-2 family members with navitoclax (ABT-263). Similar to CD133 knockdown, AKT1/2 siRNA knockdown in BAKP cells also reduced p-BAD. CD133 knockdown (T3)-mediated reduction of pBAD levels was equivalent in AKT-knockdown or AKT control cells indicating that CD133 may be upstream of AKT signaling. In BAKP cells treated with trametinib and/or ABT-263, effects of ABT-263 mirrored CD133 knockdown, since levels of active BAX and cleaved-PARP in BAKP-SC (CD133-) cells increased to the same level as that exhibited by BAKP-T3 cells (CD133+). CD133 may therefore activate a survival pathway where 1) increased phosphorylation of AKT induces 2) phosphorylation and inactivation of BAD, 3) decrease in the active form of BAX, and 4) reduction in caspase-mediated PARP cleavage, indicating apoptosis suppression leading to drug resistance in melanomas. Targeting survival pathways by which CD133 may confer chemoresistance in MICs can contribute to development of more effective treatments for patients with high-risk melanoma.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1887
Author(s):  
Lidia Hanna Markiewicz ◽  
Anna Maria Ogrodowczyk ◽  
Wiesław Wiczkowski ◽  
Barbara Wróblewska

The colonic epithelium is never exposed to a single factor, therefore studies on the effect of combinations of factors naturally and persistently present in the intestines are of special importance for understanding the phenomena occurring at this place. The aim of the study was to investigate the combined effect of 1 mM phytate and 1 mM butyrate (PA1B1) on cell lines derived from cancer (HCT116 and HT-29) and healthy (NCM460D) human colonic epithelium. Colorimetric and flow cytometry methods were used to determine the proliferation rate, cell cycle, and apoptosis. Selected markers of proliferation, inflammatory, and survival pathways were investigated at the mRNA and/or protein level. The combination of phytate and butyrate disturbed the cell cycle and triggered apoptosis and/or death in both studied cancer colonocytes to a higher extent compared to healthy colonocytes. Moreover, in healthy colonocytes, phytate activated the survival pathway without stimulation of inflammatory response. This may indicate that the response of healthy colonocytes to phytate protects colonic epithelium from the loss of integrity and tightness that would occur if inflammation developed. Based on the obtained results we postulate that studies on both cancer and/or healthy colonocytes should be carried out in the presence of butyrate as the permanent component of colonic contents. This should be of special importance when anti-proliferative/pro-apoptotic activity or inflammatory status of colonocytes is to be investigated.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1200
Author(s):  
Khushboo Goel ◽  
Erica L. Beatman ◽  
Nicholas Egersdorf ◽  
April Scruggs ◽  
Danting Cao ◽  
...  

Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing ceramide. Whether this adaptation restores homeostasis is unknown. To better understand the phenotype of HLMVEC in smokers, we interrogated a major pro-survival pathway supported by sphingosine-1-phosphate (S1P) signaling via S1P receptor 1 (S1P1). Primary HLMVECs from lungs of non-smoker or smoker donors were isolated and studied in culture for up to five passages. S1P1 mRNA and protein abundance were significantly decreased in HLMVECs from smokers compared to non-smokers. S1P1 was also decreased in situ in lungs of mice chronically exposed to CS. Levels of S1P1 expression tended to correlate with those of autophagy markers, and increasing S1P (via S1P lyase knockdown with siRNA) stimulated baseline macroautophagy with lysosomal degradation. In turn, loss of S1P1 (siRNA) inhibited these effects of S1P on HLMVECs autophagy. These findings suggest that the anti-apoptotic phenotype of HLMVECs from smokers may be maladaptive, since it is associated with decreased S1P1 expression that may impair their autophagic response to S1P.


2021 ◽  
Author(s):  
cong yan ◽  
hong wei yu ◽  
yao liu ◽  
pei wu ◽  
chun lei wang ◽  
...  

Abstract Accumulating evidence suggests that neuronal apoptosis plays a critical role in early brain injury (EBI) after subarachnoid hemorrhage (SAH), and the inhibition of apoptosis can induce neuroprotective effects in SAH animal models. c-Abl has been reported to promote neuronal apoptosis in Alzheimer's disease and cerebral ischemia, but its role in SAH had not been illuminated until now. In the present study, the effect of c-Abl on neuronal apoptosis induced by SAH was investigated. c-Abl protein levels and neuronal apoptosis were markedly increased 24 h after SAH, and the inhibition of endogenous c-Abl reduced neuronal apoptosis and mortality and ameliorated neurological deficits. Furthermore, c-Abl inhibition decreased the expression of cleaved caspase-3 (CC-3) after SAH. These results demonstrate the proapoptotic effect of c-Abl in EBI after SAH. Additionally, c-Abl inhibition further enhanced the SAH-induced phosphorylation of Akt and glycogen synthase kinase (GSK)3β. LY294002 abrogated the beneficial effects of targeting c-Abl and exacerbated neuronal apoptosis after SAH. SAH decreased LRP-1 levels and downregulated LRP-1 by RAP and LRP-1 small interfering RNA (siRNA) induced a dramatic decrease in Akt/GSK3β activation in the presence of c-Abl siRNA. This is the first report showing that the c-Abl tyrosine kinase may play a key role in SAH-induced neuronal apoptosis by regulating the LRP-1-dependent Akt/GSK3β survival pathway. Thus, c-Abl has the potential to be a novel target for EBI therapy after SAH.


Sign in / Sign up

Export Citation Format

Share Document