scholarly journals A spontaneous mutation in the movement protein gene of brome mosaic virus modulates symptom phenotype in Nicotiana benthamiana.

1995 ◽  
Vol 69 (4) ◽  
pp. 2689-2691 ◽  
Author(s):  
A L Rao ◽  
G L Grantham
2000 ◽  
Vol 13 (5) ◽  
pp. 512-519 ◽  
Author(s):  
Anton S. Callaway ◽  
Zhong Huang ◽  
Stephen H. Howell

A novel genetic screen was used to identify host factors in Arabidopsis thaliana that suppress mutations in the Cauliflower mosaic virus (CaMV) movement protein gene (gene I). A series of small mutations was made in gene I and the mutations were tested for their suitability in a suppressor screen. The first round of screening yielded only revertants or second-site mutations in gene I. A derivative of one of the second-site mutant viruses (N7) that was delayed in symptom production was used in a second round of screening for suppressor plants that accelerated symptom production. Two candidate suppressor plants were found that accelerated by 1 to 4 days the first appearance of symptoms caused by the mutant viruses. One of the suppressors (5-2), called asc1 (acceleration of symptoms by CaMV N7), was mapped to chromosome 1. Two additional loci that differentially affect N7 virus susceptibility in the parental Columbia and Ler ecotypes were mapped to chromosomes 3 and 4 by quantitative trait locus (QTL) analysis.


2007 ◽  
Vol 20 (6) ◽  
pp. 671-681 ◽  
Author(s):  
Masanori Kaido ◽  
Yosuke Inoue ◽  
Yoshika Takeda ◽  
Kazuhiko Sugiyama ◽  
Atsushi Takeda ◽  
...  

The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the α chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.


2013 ◽  
Vol 94 (5) ◽  
pp. 1145-1150 ◽  
Author(s):  
Akihiro Hiraguri ◽  
Shoko Ueki ◽  
Hideki Kondo ◽  
Koji Nomiyama ◽  
Takumi Shimizu ◽  
...  

Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.


2003 ◽  
Vol 77 (18) ◽  
pp. 9750-9757 ◽  
Author(s):  
Yoon Gi Choi ◽  
A. L. N. Rao

ABSTRACT The three genomic and a single subgenomic RNA of brome mosaic virus (BMV), an RNA virus infecting plants, are packaged by a single-coat protein (CP) into three morphologically indistinguishable icosahedral virions with T = 3 quasi-symmetry. Genomic RNAs 1 and 2 are packaged individually into separate particles whereas genomic RNA3 and subgenomic RNA4 (coat protein mRNA) are copackaged into a single particle. We report here that packaging of dicistronic RNA3 requires a bipartite signal. A highly conserved 3′ tRNA-like structure postulated to function as a nucleating element (NE) for CP subunits (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002) and a cis-acting, position-dependent packaging element (PE) of 187 nt present in the nonstructural movement protein gene are the integral components of the packaging core. Efficient incorporation into BMV virions of nonviral RNA chimeras containing NE and the PE provides confirmatory evidence that these two elements are sufficient to direct packaging. Analysis of virion RNA profiles obtained from barley protoplasts transfected with a RNA3 variant lacking the PE provides the first genetic evidence that de novo synthesized RNA4 is incompetent for autonomous assembly whereas prior packaging of RNA3 is a prerequisite for RNA4 to copackage.


2009 ◽  
pp. 149-155
Author(s):  
K. Obsuwan ◽  
D.A. Hieber ◽  
R.G. Mudalige-Jayawickrama ◽  
A.R. Kuehnle

2002 ◽  
Vol 76 (7) ◽  
pp. 3554-3557 ◽  
Author(s):  
Emese Huppert ◽  
Dénes Szilassy ◽  
Katalin Salánki ◽  
Zoltán Divéki ◽  
Ervin Balázs

ABSTRACT A hybrid virus (CMVcymMP) constructed by replacing the movement protein (MP) of cucumber mosaic cucumovirus (CMV) with that of cymbidium ringspot tombusvirus (CymRSV) was viable and could efficiently spread both cell to cell and long distance in host plants. The hybrid virus was able to move cell to cell in the absence of functional CP, whereas CP-deficient CMV was restricted to single inoculated cells. In several Chenopodium and Nicotiana species, the symptom phenotype of the hybrid virus infection was clearly determined by the foreign MP gene. In Nicotiana debneyi and Nicotiana tabacum cv. Xanthi, the hybrid virus could move systemically, contrary to CymRSV.


Sign in / Sign up

Export Citation Format

Share Document