scholarly journals Downregulation of the NbNACa1 Gene Encoding a Movement-Protein-Interacting Protein Reduces Cell-to-Cell Movement of Brome mosaic virus in Nicotiana benthamiana

2007 ◽  
Vol 20 (6) ◽  
pp. 671-681 ◽  
Author(s):  
Masanori Kaido ◽  
Yosuke Inoue ◽  
Yoshika Takeda ◽  
Kazuhiko Sugiyama ◽  
Atsushi Takeda ◽  
...  

The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the α chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.

2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


2001 ◽  
Vol 14 (2) ◽  
pp. 126-134 ◽  
Author(s):  
Atsushi Tamai ◽  
Tetsuo Meshi

Cell-to-cell movement of a plant virus requires expression of the movement protein (MP). It has not been fully elucidated, however, how the MP functions in primary infected cells. With the use of a microprojectile bombardment-mediated DNA infection system for Tomato mosaic virus (ToMV), we found that the cotransfected ToMV MP gene exerts its effects in the initially infected cells and in their surrounding cells to achieve multicellular spread of movement-defective ToMV. Five other tobamoviral MPs examined also transcomplemented the movement-defective phenotype of ToMV, but the Cucumber mosaic virus 3a MP did not. Together with the cell-to-cell movement of the mutant virus, a fusion between the MP and an enhanced green fluorescent protein variant (EGFP) expressed in trans was distributed multicellularly and localized primarily in plasmodesmata between infected cells. In contrast, in noninfected sites the MP-EGFP fusion accumulated predominantly inside the bombarded cells as irregularly shaped aggregates, and only a minute amount of the fusion was found in plasmodesmata. Thus, the behavior of ToMV MP is greatly modulated in the presence of a replicating virus and it is highly likely that the MP spreads in the infection sites, coordinating with the cell-to-cell movement of the viral genome.


2001 ◽  
Vol 75 (18) ◽  
pp. 8831-8836 ◽  
Author(s):  
Kyotaro Hirashima ◽  
Yuichiro Watanabe

ABSTRACT Tobacco mosaic virus (TMV) encodes a 30-kDa movement protein (MP) which enables viral movement from cell to cell. It is, however, unclear whether the 126- and 183-kDa replicase proteins are involved in the cell-to-cell movement of TMV. In the course of our studies into TMV-R, a strain with a host range different from that of TMV-U1, we have obtained an interesting chimeric virus, UR-hel. The amino acid sequence differences between UR-hel and TMV-U1 are located only in the helicase-like domain of the replicase. Interestingly, UR-hel has a defect in its cell-to-cell movement. The replication of UR-hel showed a level of replication of the genome, synthesis, and accumulation of MP similar to that observed in TMV-U1-inoculated protoplasts. Such observations support the hypothesis that the replicase coding region may in some fashion be involved in cell-to-cell movement of TMV.


2012 ◽  
Vol 93 (2) ◽  
pp. 430-437 ◽  
Author(s):  
Wendy J. McGavin ◽  
Carolyn Mitchell ◽  
Peter J. A. Cock ◽  
Kathryn M. Wright ◽  
Stuart A. MacFarlane

A new, segmented, negative-strand RNA virus with morphological and sequence similarities to other viruses in the genus Emaravirus was discovered in raspberry plants exhibiting symptoms of leaf blotch disorder, a disease previously attributed to the eriophyid raspberry leaf and bud mite (Phyllocoptes gracilis). The virus, tentatively named raspberry leaf blotch virus (RLBV), has five RNAs that each potentially encode a single protein on the complementary strand. RNAs 1, 2 and 3 encode, respectively, a putative RNA-dependent RNA polymerase, a glycoprotein precursor and the nucleocapsid. RNA4 encodes a protein with sequence similarity to proteins of unknown function that are encoded by the genomes of other emaraviruses. When expressed transiently in plants fused to green or red fluorescent protein, the RLBV P4 protein localized to the peripheral cell membrane and to punctate spots in the cell wall. These spots co-localized with GFP-tagged tobacco mosaic virus 30K cell-to-cell movement protein, which is itself known to associate with plasmodesmata. These results suggest that the P4 protein may be a movement protein for RLBV. The fifth RLBV RNA, encoding the P5 protein, is unique among the sequenced emaraviruses. The amino acid sequence of the P5 protein does not suggest any potential function; however, when expressed as a GFP fusion, it localized as small aggregates in the cytoplasm near to the periphery of the cell.


2006 ◽  
Vol 81 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Padmanaban Annamalai ◽  
A. L. N. Rao

ABSTRACT The four encapsidated RNAs of brome mosaic virus (BMV; B1, B2, B3, and B4) contain a highly conserved 3′ 200-nucleotide (nt) region encompassing the tRNA-like structure (TLS) which is required for packaging in vitro (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002). To validate these observations in vivo, we performed packaging assays using Agrobacterium-mediated transient expression of RNAs and coat protein (CP) (P. Annamalai and A. L. N. Rao, Virology 338:96-111, 2005). Coexpression of TLS-less constructs of B1 or B2 or B3 and CP mRNAs in Nicotiana benthamiana leaves resulted in packaging of TLS-less B1 and B2 but not B3, suggesting that packaging of B3 requires the TLS in cis. This conjecture was confirmed by the efficient packaging of a B3 chimera in which the viral TLS was replaced with a cellular tRNATyr. When N. benthamiana leaves were infiltrated with a mixture of transformants containing wild-type B1 (wtB1) plus wtB2 plus a TLS-less B3 (wtB1+wtB2+TLS-lessB3), the 3′ end of progeny B3 was restored by heterologous recombination with that of either B1 or B2. This intrinsic cis-requirement of TLS in promoting B3 packaging was further confirmed when a mixture containing agrotransformants of TLS-less B1+B2+B3 was supplemented with either wtB4 or a 3′ 200-nt or 3′ 336-nt untranslated region (UTR) of B3. Northern blot analysis followed by sequencing of B3 progeny revealed that replication of TLS-less B3, but not TLS-less B1 or B2, was fully restored due to recombination with TLS from transiently expressed wtB4 or the B3 3′ UTR. Collectively, these observations suggested that the requirement of a cis-acting TLS is distinct for B3 compared with B1 or B2.


2013 ◽  
Vol 94 (5) ◽  
pp. 1145-1150 ◽  
Author(s):  
Akihiro Hiraguri ◽  
Shoko Ueki ◽  
Hideki Kondo ◽  
Koji Nomiyama ◽  
Takumi Shimizu ◽  
...  

Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.


1999 ◽  
Vol 12 (11) ◽  
pp. 985-993 ◽  
Author(s):  
Tomas Canto ◽  
Peter Palukaitis

The 3a movement protein of cucumber mosaic virus (CMV), fused to the jellyfish green fluorescent protein (3a-GFP) generated surface punctate aggregates as well as tubules protruding from infected tobacco and Nicotiana benthamiana protoplasts. Fluorescent tubules also appeared on the surface of protoplasts prepared from transgenic tobacco plants expressing 3a-GFP, indicating that the 3a protein is the only viral component required for the formation of the tubules. CMV with a mutation in the gene encoding the 3a protein, M8 CMV, could infect tobacco systemically, but tubules were not detected protruding from infected protoplasts when the mutated 3a protein was fused to the GFP [(M8)3a-GFP]. This indicates that the ability of the 3a protein to generate tubules in the surface of protoplasts is not a function required for the spread of CMV in tobacco. On the other hand, the (M8)3a-GFP did not traffic through plasmodesmata interconnecting tobacco epidermal cells, in contrast to the wild-type 3a-GFP. This suggests that there may be a correlation between the ability of the 3a protein to assemble tubules in protoplasts and its ability to promote movement within certain tissues.


Sign in / Sign up

Export Citation Format

Share Document