scholarly journals Fungal phosphate transporter serves as a receptor backbone for gibbon ape leukemia virus.

1997 ◽  
Vol 71 (10) ◽  
pp. 7619-7622 ◽  
Author(s):  
L Pedersen ◽  
M van Zeijl ◽  
S V Johann ◽  
B O'Hara
2000 ◽  
Vol 11 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Christophe Demaison ◽  
Gaby Brouns ◽  
Michael P. Blundell ◽  
Jacki P. Goldman ◽  
Roland J. Levinsky ◽  
...  

1987 ◽  
Vol 7 (8) ◽  
pp. 2735-2744
Author(s):  
J P Quinn ◽  
N Holbrook ◽  
D Levens

The gibbon ape leukemia virus (GALV) contains enhancer activity within its long terminal repeat. In the GALV Seato strain this activity resides in a 48-base-pair (bp) repeated element. We demonstrate the existence of a cellular protein which binds in this region of the Seato strain. A sensitive method for enriching protein-DNA complexes from crude extracts coupled with exonuclease and DNase footprint analysis revealed the specific binding of this protein to a 21-bp region within each repeated element. A 22-bp oligonucleotide fragment defined solely by the 21-bp footprint binds a protein in vitro and displays enhancer activity in vivo, suggesting that this protein is a major determinant of GALV enhancer activity. The protein is present in three cell lines which are positive for enhancer activity and is not detected in Jurkat cells, which are negative for enhancer activity. Only GALV long-terminal-repeat variants which support high levels of enhancer activity in vivo compete with this protein for specific binding in vitro, suggesting a potential role for the protein in determining enhancer activity. This protein binding is not inhibited by competition with heterologous retroviral enhancers, demonstrating that it is not a ubiquitous retroviral enhancer binding protein.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2379-2387 ◽  
Author(s):  
TR Jr Bauer ◽  
AD Miller ◽  
DD Hickstein

Leukocyte adherence deficiency (LAD) is an inherited immunodeficiency disease caused by defects in the CD18 leukocyte integrin subunit. Transduction of CD18 into hematopoietic cells from children with LAD represents a potential therapy for this disorder. In an attempt to maximize transfer and expression of CD18, we evaluated retroviral vectors with and without the neomycin selectable marker, with a modified tRNA primer binding site designed to prevent inhibition of gene expression, and with two different viral envelope proteins produced by using the amphotropic retrovirus packaging cell line PA317 or the gibbon ape leukemia virus packaging cell line PG13. The vectors were tested using transducing K562/CD11b cells and LAD Epstein-Barr virus (EBV) B cells and measuring levels of cell-surface CD11/CD18 expression by fluorescence-activated cell sorter analysis. The best results were obtained with vectors made using PG13 packaging cells, for which about 25% of the K562 cells exposed once to the vectors expressed surface CD11b/CD18 and about 25% of the LAD EBV B cells exposed three times over a 3-day period to the vectors expressed surface CD11a/CD18. In contrast, transduction of cells under similar conditions with retroviral vectors produced using PA317 producer cells yielded less than 2% of the K562 cells and less than 4% of the LAD EBV B cells expressing the CD11/CD18 heterodimer on the cell surface. The presence or absence of the neomycin resistance gene or the modified tRNA primer had no effect on CD18 gene transfer rate or expression level. The increase in transduction with PG13 vectors correlated with Northern blotting and reverse transcription-polymerase chain reaction studies that indicated that both K562 cells and the LAD EBV B cells express transcripts for the gibbon ape leukemia virus receptor at higher levels than for the amphotropic virus receptor. These findings indicate that the transduction efficiency of retroviral packaging cell lines correlates with receptor gene expression in the target cells and that vectors made using PG13 cells may be efficacious for gene therapy for LAD and other diseases in which gene transfer to hematopoietic cells is required.


2001 ◽  
Vol 75 (9) ◽  
pp. 4129-4138 ◽  
Author(s):  
Ilias Christodoulopoulos ◽  
Paula M. Cannon

ABSTRACT Pseudotyping retrovirus and lentivirus vectors with different viral fusion proteins is a useful strategy to alter the host range of the vectors. Although lentivirus vectors are efficiently pseudotyped by Env proteins from several different subtypes of murine leukemia virus (MuLV), the related protein from gibbon ape leukemia virus (GaLV) does not form functional pseudotypes. We have determined that this arises because of an inability of GaLV Env to be incorporated into lentivirus vector particles. By exploiting the homology between the GaLV and MuLV Env proteins, we have mapped the determinants of incompatibility in the GaLV Env. Three modifications that allowed GaLV Env to pseudotype human immunodeficiency virus type 1 particles were identified: removal of the R peptide (C-terminal half of the cytoplasmic domain), replacement of the whole cytoplasmic tail with the corresponding MuLV region, and mutation of two residues upstream of the R peptide cleavage site. In addition, we have previously proposed that removal of the R peptide from MuLV Env proteins enhances their fusogenicity by transmitting a conformational change to the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392–5398, 1998). Our analysis of chimeric MuLV/GaLV Env proteins provides further evidence in support of this model and suggests that proper Env function involves both interactions within the cytoplasmic tail and more long-range interactions between the cytoplasmic tail, the membrane-spanning region, and the ectodomain of the protein.


1997 ◽  
Vol 23 (3) ◽  
pp. 422-433 ◽  
Author(s):  
Denise E. Sabatino ◽  
Bao-Khanh Q. Do ◽  
Louise C. Pyle ◽  
Nancy E. Seidel ◽  
Laurie J. Girard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document