scholarly journals A New Internal Ribosomal Entry Site 5′ Boundary Is Required for Poliovirus Translation Initiation in a Mouse System

1998 ◽  
Vol 72 (3) ◽  
pp. 2398-2405 ◽  
Author(s):  
Toshihiko Ishii ◽  
Kazuko Shiroki ◽  
Duck-Hee Hong ◽  
Takahiro Aoki ◽  
Yoshihiro Ohta ◽  
...  

ABSTRACT Four mutants of the virulent Mahoney strain of poliovirus were generated by introducing mutations in nucleotides (nt) 128 to 134 of the genome, a region that contains a part of the stem-loop II (SLII) structure located within the internal ribosomal entry site (IRES; nt 120 to 590) (K. Shiroki, T. Ishii, T. Aoki, Y. Ota, W.-X. Yang, T. Komatsu, Y. Ami, M. Arita, S. Abe, S. Hashizume, and A. Nomoto, J. Virol. 71:1–8, 1997). These mutants (SLII mutants) replicated well in human HeLa cells but not in mouse TgSVA cells that had been established from the kidney of a poliovirus-sensitive transgenic mouse. Their neurovirulence in mice was also greatly attenuated compared to that of the parental virus. The poor replication activity of the SLII mutants in TgSVA cells appeared to be attributable to reduced activity of the IRES. Two and three naturally occurring revertants that replicated well in TgSVA cells were isolated from mutants SLII-1 and SLII-5, respectively. The revertants recovered IRES activity in a cell-free translation system from TgSVA cells and returned to a neurovirulent phenotype like that of the Mahoney strain in mice. Two of the revertant sites that affected the phenotype were identified as being at nt 107 and within a region from nt 120 to 161. A mutation at nt 107, specifically a change from uridine to adenine, was observed in all the revertant genomes and exerted a significant effect on the revertant phenotype. Exhibition of the full revertant phenotype required mutations in both regions. These results suggested that nt 107 of poliovirus RNA is involved in structures required for the IRES activity in mouse cells.

2013 ◽  
Vol 94 (12) ◽  
pp. 2657-2663 ◽  
Author(s):  
Hazel Stewart ◽  
Cheryl Walter ◽  
Dale Jones ◽  
Sinead Lyons ◽  
Peter Simmonds ◽  
...  

The 5′ untranslated region (5′UTR) of the recently described non-primate hepacivirus (NPHV) contains a region with sequence homology to the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) and GB virus B (GBV-B). Here, we demonstrated internal translation initiation by the NPHV 5′UTR in a bicistronic vector. An RNA stem–loop upstream of the NPHV IRES was structurally distinct from corresponding regions in HCV and GBV-B, and was not required for IRES function. Insertion of the NPHV stem–loop into the corresponding region of the HCV 5′UTR within the HCV subgenomic replicon significantly impaired RNA replication, indicating that long-range interactions between the 5′UTR and cis-acting downstream elements within the NPHV genome are not interchangeable with those of HCV. Despite similarities in IRES structure and function between hepaciviruses, replication elements in the NPHV 5′UTR appear functionally distinct from those of HCV.


1999 ◽  
Vol 73 (2) ◽  
pp. 958-964 ◽  
Author(s):  
Matthias Gromeier ◽  
Birgit Bossert ◽  
Mineo Arita ◽  
Akio Nomoto ◽  
Eckard Wimmer

ABSTRACT In the human central nervous system, susceptibility to poliovirus (PV) infection is largely confined to a specific subpopulation of neuronal cells. PV tropism is likely to be determined by cell-external components such as the PV receptor CD155, as well as cell-internal constraints such as the availability of a suitable microenvironment for virus propagation. We reported previously that the exchange of the cognate internal ribosomal entry site (IRES) within the 5′ nontranslated region of PV with its counterpart from human rhinovirus type 2 (HRV2) can eliminate the neuropathogenic phenotype in a transgenic mouse model for poliomyelitis without diminishing the growth properties in HeLa cells. We now show that attenuation of neurovirulence of PV/HRV2 chimeras is not confined to CD155 transgenic mice but is evident also after intraspinal inoculation intoCynomolgus monkeys. We have dissected the PV and HRV2 IRES elements to determine those structures responsible for neurovirulence (or attenuation) of these chimeric viruses. We report that two adjacent stem loop structures within the IRES cooperatively determine neuropathogenicity.


2007 ◽  
Vol 81 (18) ◽  
pp. 10017-10028 ◽  
Author(s):  
Hidemi Toyoda ◽  
David Franco ◽  
Kentaro Fujita ◽  
Aniko V. Paul ◽  
Eckard Wimmer

ABSTRACT The 5′ nontranslated region of poliovirus RNA contains two highly structured regions, the cloverleaf (CL) and the internal ribosomal entry site (IRES). A cellular protein, the poly(rC) binding protein (PCBP), has been reported to interact with the CL either alone or in combination with viral protein 3CDpro. The formation of the ternary complex is essential for RNA replication and, hence, viral proliferation. PCBP also interacts with stem-loop IV of the IRES, an event critical for the initiation of cap-independent translation. Until recently, no special function was assigned to a spacer region (nucleotides [nt] 89 to 123) located between the CL and the IRES. However, on the basis of our discovery that this region strongly affects the neurovirulent phenotype of poliovirus, we have embarked upon genetic and biochemical analyses of the spacer region, focusing on two clusters of C residues (C93-95 and C98-100) that are highly conserved among entero- and rhinoviruses. Replacement of all six C residues with A residues had no effect on translation in vitro but abolished RNA replication, leading to a lethal growth phenotype of the virus in HeLa cells. Mutation of the first group of C residues (C93-95) resulted in slower viral growth, whereas the C98-100A change had no significant effect on viability. Genetic analyses of the C-rich region by extensive mutagenesis and analyses of revertants revealed that two consecutive C residues (C94-95) were sufficient to promote normal growth of the virus. However, there was a distinct position effect of the preferred C residues. A 142-nt-long 5′-terminal RNA fragment including the CL and spacer sequences efficiently bound PCBP, whereas no PCBP binding was observed with the CL (nt 1 to 88) alone. Binding of PCBP to the 142-nt fragment was completely ablated after the two C clusters in the spacer were mutated to A clusters. In contrast, the same mutations had no effect on the binding of 3CDpro to the 142-nt RNA fragment. Stepwise replacement of the C residues with A residues resulted in impaired replication that covaried with weaker binding of PCBP in vitro. We conclude that PCBP has little, if any, binding affinity for the CL itself (nt 1 to 88) but requires additional nucleotides downstream of the CL for its function as an essential cofactor in poliovirus RNA replication. These data reveal a new essential function of the spacer between the CL and the IRES in poliovirus proliferation.


2021 ◽  
Vol 136 ◽  
pp. 111239
Author(s):  
Muhammad Usman Ashraf ◽  
Hafiz Muhammad Salman ◽  
Muhammad Farhan Khalid ◽  
Muhammad Haider Farooq Khan ◽  
Saima Anwar ◽  
...  

2004 ◽  
Vol 3 (5) ◽  
pp. 949-957 ◽  
Author(s):  
Henry Lu ◽  
Weiqun Li ◽  
William Stafford Noble ◽  
Donald Payan ◽  
D. C. Anderson

1993 ◽  
Vol 13 (6) ◽  
pp. 3340-3349 ◽  
Author(s):  
X Danthinne ◽  
J Seurinck ◽  
F Meulewaeter ◽  
M Van Montagu ◽  
M Cornelissen

The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5' cap structure and a 3' poly(A) tail. We show that in a cell-free translation system derived from wheat germ, STNV RNA lacking the 600-nucleotide trailer is translated an order of magnitude less efficiently than full-size RNA. Deletion analyses positioned the translational enhancer domain (TED) within a conserved hairpin structure immediately downstream from the coat protein cistron. TED enhances translation when fused to a heterologous mRNA, but the level of enhancement depends on the nature of the 5' untranslated sequence and is maximal in combination with the STNV leader. The STNV leader and TED have two regions of complementarity. One of the complementary regions in TED resembles picornavirus box A, which is involved in cap-independent translation but which is located upstream of the coding region.


Sign in / Sign up

Export Citation Format

Share Document