scholarly journals N-Terminal Protease of Pestiviruses: Identification of Putative Catalytic Residues by Site-Directed Mutagenesis

1998 ◽  
Vol 72 (3) ◽  
pp. 2544-2547 ◽  
Author(s):  
Tillmann Rümenapf ◽  
Robert Stark ◽  
Manuela Heimann ◽  
Heinz-Jürgen Thiel

ABSTRACT Pestiviruses are the only members of the Flaviviridaethat encode a nonstructural protease at the N terminus of their polyproteins. This N-terminal protease (Npro) cleaves itself off of the nascent polyprotein autocatalytically and thereby generates the N terminus of the adjacent viral capsid protein C. In previous reports, sequence similarities between Npro and the catalytic residues of papain-like cysteine proteases were put forward. To test this hypothesis, substitutions of cysteine and histidine residues within Npro were carried out by site-directed mutagenesis. Translation of the mutagenized Npro-C proteins in cell-free lysates confirmed that only the predicted Cys69 was an essential amino acid for proteolysis, not His130. Further essential residues were identified with His49 and Glu22. While it remains speculative whether Glu22-His49-Cys69 actually build a catalytic triad, these results invalidate the assumption that Npro is a papain-like cysteine protease.

2000 ◽  
Vol 347 (3) ◽  
pp. 741-747 ◽  
Author(s):  
Isabelle MOUYNA ◽  
Michel MONOD ◽  
Thierry FONTAINE ◽  
Bernard HENRISSAT ◽  
Barbara LÉCHENNE ◽  
...  

A new family of glycosylphosphatidylinositol-anchored β(1-3)glucanosyltransferases (Gelp), recently identified and characterized in the filamentous fungus Aspergillus fumigatus, showed functional similarity to the Gas/Phr/Epd protein families, which are involved in yeast morphogenesis. Sequence comparisons and hydrophobic cluster analysis (HCA) showed that all the Gas/Phr/Epd/Gel proteins belong to a new family of glycosylhydrolases, family 72. We confirmed by site-directed mutagenesis and biochemical analysis that the two conserved glutamate residues (the putative catalytic residues of this family, as determined by HCA) are involved in the active site of this family of glycosylhydrolases.


2007 ◽  
Vol 73 (9) ◽  
pp. 2931-2938 ◽  
Author(s):  
Camilla Oppegård ◽  
Gunnar Fimland ◽  
Lisbeth Thorbæk ◽  
Jon Nissen-Meyer

ABSTRACT The two peptides (Lcn-α and Lcn-β) of the two-peptide bacteriocin lactococcin G (Lcn) were changed by stepwise site-directed mutagenesis into the corresponding peptides (Ent-α and Ent-β) of the two-peptide bacteriocin enterocin 1071 (Ent), and the potencies and specificities of the various hybrid constructs were determined. Both Lcn and, to a lesser extent, Ent were active against all the tested lactococcal strains, but only Ent was active against the tested enterococcal strains. The two bacteriocins thus differed in their relative potencies to various target cells, despite their sequence similarities. The hybrid combination Lcn-α+Ent-β had low potency against all strains tested, indicating that these two peptides do not interact optimally. The reciprocal hybrid combination (i.e., Ent-α+Lcn-β), in contrast, was highly potent, indicating that these two peptides may form a functional antimicrobial unit. In fact, this hybrid combination (Ent-α+Lcn-β) was more potent against lactococcal strains than wild-type Ent was (i.e., Ent-α+Ent-β), but it was inactive against enterococcal strains (in contrast to Ent but similar to Lcn). The observation that Ent-α is more active against lactococci in combination with Lcn-β and more active against enterococci in combination with Ent-β suggests that the β peptide is an important determinant of target cell specificity. Especially the N-terminal residues of the β peptide seem to be important for specificity, since Ent-α combined with an Ent-β variant with Ent-to-Lcn mutations at positions 1 to 4, 7, 9, and 10 was >150-fold less active against enterococcal strains but one to four times more active against lactococcal strains than Ent-α+Ent-β. Moreover, Ent-to-Lcn single-residue mutations in the region spanning residues 1 to 7 in Ent-β had a more detrimental effect on the activity against enterococci than on that against lactococcal strains. Of the single-residue mutations made in the N-terminal region of the α peptide, the Ent-to-Lcn mutations N8Q and P12R in Ent-α influenced specificity, as follows: the N8Q mutation had no effect on activity against tested enterococcal strains but increased the activity 2- to 4-fold against the tested lactococcal strains, and the P12R mutation reduced the activity >150-fold and only ∼2-fold against enterococcal and lactococcal strains, respectively. Changing residues in the C-terminal half/part of the Lcn peptides (residues 20 to 39 and 25 to 35 in Lcn-α and Lcn-β, respectively) to those found in the corresponding Ent peptides did not have a marked effect on the activity, but there was an ∼10-fold or greater reduction in the activity upon also introducing Lcn-to-Ent mutations in the mid-region (residues 8 to 19 and 9 to 24 in Lcn-α and Lcn-β, respectively). Interestingly, the Lcn-to-Ent F19L+G20A mutation in an Lcn-Ent-β hybrid peptide was more detrimental when the altered peptide was combined with Lcn-α (>10-fold reduction) than when it was combined with Ent-α (∼2-fold reduction), suggesting that residues 19 and 20 (which are part of a GXXXG motif) in the β peptide may be involved in a specific interaction with the cognate α peptide. It is also noteworthy that the K2P and A7P mutations in Lcn-β reduced the activity only ∼2-fold, suggesting that the first seven residues in the β peptides do not form an α-helix.


Biochimie ◽  
2017 ◽  
Vol 139 ◽  
pp. 125-136 ◽  
Author(s):  
Anna G. Mikhailova ◽  
Tatiana V. Rakitina ◽  
Vladimir I. Timofeev ◽  
David M. Karlinsky ◽  
Dmitry A. Korzhenevskiy ◽  
...  

1999 ◽  
Vol 274 (39) ◽  
pp. 27815-27822 ◽  
Author(s):  
Hiroshi Oyama ◽  
Shin-ichiro Abe ◽  
Souko Ushiyama ◽  
Saori Takahashi ◽  
Kohei Oda

2007 ◽  
Vol 81 (11) ◽  
pp. 6117-6121 ◽  
Author(s):  
S. Laurent ◽  
C. Blondeau ◽  
M. Belghazi ◽  
S. Remy ◽  
E. Esnault ◽  
...  

ABSTRACT Herpesviruses encode a unique serine protease essential for viral capsid maturation. This protease undergoes autoprocessing at two sites, R and M, at the consensus sequence (V, L, I)P3-XP2-AP1/SP1′ (where X is a polar amino acid). We observed complete autoprocessing at the R and M sites of Marek's disease virus (MDV) protease following production of the polyprotein in Escherichia coli. Site-directed mutagenesis confirmed the predicted sequence of the R and M sites, with the M site sequence being nonconsensual: MP3-NP2-AP1/SP1′. Mutagenesis and expression kinetics studies suggested that the atypical MDV M site was cleaved exclusively by the processed short protease, a feature making MDV unique among herpesviruses.


2000 ◽  
Vol 64 (12) ◽  
pp. 2692-2695 ◽  
Author(s):  
Kazuhiro ICHIKAWA ◽  
Takashi TONOZUKA ◽  
Takehiro YOKOTA ◽  
Yoichiro SHIMURA ◽  
Yoshiyuki SAKANO

FEBS Letters ◽  
1992 ◽  
Vol 309 (3) ◽  
pp. 421-423 ◽  
Author(s):  
Nathalie Duval ◽  
Suzanne Bon ◽  
Israel Silman ◽  
Joel Sussman ◽  
Jean Massoulié

Sign in / Sign up

Export Citation Format

Share Document