scholarly journals Analysis of the Two-Peptide Bacteriocins Lactococcin G and Enterocin 1071 by Site-Directed Mutagenesis

2007 ◽  
Vol 73 (9) ◽  
pp. 2931-2938 ◽  
Author(s):  
Camilla Oppegård ◽  
Gunnar Fimland ◽  
Lisbeth Thorbæk ◽  
Jon Nissen-Meyer

ABSTRACT The two peptides (Lcn-α and Lcn-β) of the two-peptide bacteriocin lactococcin G (Lcn) were changed by stepwise site-directed mutagenesis into the corresponding peptides (Ent-α and Ent-β) of the two-peptide bacteriocin enterocin 1071 (Ent), and the potencies and specificities of the various hybrid constructs were determined. Both Lcn and, to a lesser extent, Ent were active against all the tested lactococcal strains, but only Ent was active against the tested enterococcal strains. The two bacteriocins thus differed in their relative potencies to various target cells, despite their sequence similarities. The hybrid combination Lcn-α+Ent-β had low potency against all strains tested, indicating that these two peptides do not interact optimally. The reciprocal hybrid combination (i.e., Ent-α+Lcn-β), in contrast, was highly potent, indicating that these two peptides may form a functional antimicrobial unit. In fact, this hybrid combination (Ent-α+Lcn-β) was more potent against lactococcal strains than wild-type Ent was (i.e., Ent-α+Ent-β), but it was inactive against enterococcal strains (in contrast to Ent but similar to Lcn). The observation that Ent-α is more active against lactococci in combination with Lcn-β and more active against enterococci in combination with Ent-β suggests that the β peptide is an important determinant of target cell specificity. Especially the N-terminal residues of the β peptide seem to be important for specificity, since Ent-α combined with an Ent-β variant with Ent-to-Lcn mutations at positions 1 to 4, 7, 9, and 10 was >150-fold less active against enterococcal strains but one to four times more active against lactococcal strains than Ent-α+Ent-β. Moreover, Ent-to-Lcn single-residue mutations in the region spanning residues 1 to 7 in Ent-β had a more detrimental effect on the activity against enterococci than on that against lactococcal strains. Of the single-residue mutations made in the N-terminal region of the α peptide, the Ent-to-Lcn mutations N8Q and P12R in Ent-α influenced specificity, as follows: the N8Q mutation had no effect on activity against tested enterococcal strains but increased the activity 2- to 4-fold against the tested lactococcal strains, and the P12R mutation reduced the activity >150-fold and only ∼2-fold against enterococcal and lactococcal strains, respectively. Changing residues in the C-terminal half/part of the Lcn peptides (residues 20 to 39 and 25 to 35 in Lcn-α and Lcn-β, respectively) to those found in the corresponding Ent peptides did not have a marked effect on the activity, but there was an ∼10-fold or greater reduction in the activity upon also introducing Lcn-to-Ent mutations in the mid-region (residues 8 to 19 and 9 to 24 in Lcn-α and Lcn-β, respectively). Interestingly, the Lcn-to-Ent F19L+G20A mutation in an Lcn-Ent-β hybrid peptide was more detrimental when the altered peptide was combined with Lcn-α (>10-fold reduction) than when it was combined with Ent-α (∼2-fold reduction), suggesting that residues 19 and 20 (which are part of a GXXXG motif) in the β peptide may be involved in a specific interaction with the cognate α peptide. It is also noteworthy that the K2P and A7P mutations in Lcn-β reduced the activity only ∼2-fold, suggesting that the first seven residues in the β peptides do not form an α-helix.

2014 ◽  
Vol 80 (20) ◽  
pp. 6549-6559 ◽  
Author(s):  
Sabrina Wemhoff ◽  
Roland Klassen ◽  
Friedhelm Meinhardt

ABSTRACTZymocin is aKluyveromyces lactisprotein toxin composed of αβγ subunits encoded by the cytoplasmic virus-like element k1 and functions by αβ-assisted delivery of the anticodon nuclease (ACNase) γ into target cells. The toxin binds to cells' chitin and exhibits chitinase activityin vitrothat might be important during γ import.Saccharomyces cerevisiaestrains carrying k1-derived hybrid elements deficient in either αβ (k1ORF2) or γ (k1ORF4) were generated. Loss of either gene abrogates toxicity, and unexpectedly, Orf2 secretion depends on Orf4 cosecretion. Functional zymocin assembly can be restored by nuclear expression of k1ORF2 or k1ORF4, providing an opportunity to conduct site-directed mutagenesis of holozymocin. Complementation required active site residues of α's chitinase domain and the sole cysteine residue of β (Cys250). Since βγ are reportedly disulfide linked, the requirement for the conserved γ C231 was probed. Toxicity of intracellularly expressed γ C231A indicated no major defect in ACNase activity, while complementation of k1ΔORF4 by γ C231A was lost, consistent with a role of β C250 and γ C231 in zymocin assembly. To test the capability of αβ to carry alternative cargos, the heterologous ACNase fromPichia acaciae(P. acaciaeOrf2 [PaOrf2]) was expressed, along with its immunity gene, in k1ΔORF4. While efficient secretion of PaOrf2 was detected, suppression of the k1ΔORF4-derived k1Orf2 secretion defect was not observed. Thus, the dependency of k1Orf2 on k1Orf4 cosecretion needs to be overcome prior to studying αβ's capability to deliver other cargo proteins into target cells.


2004 ◽  
Vol 186 (18) ◽  
pp. 6239-6247 ◽  
Author(s):  
Jung-Gun Kim ◽  
Eunkyung Jeon ◽  
Jonghee Oh ◽  
Jae Sun Moon ◽  
Ingyu Hwang

ABSTRACT HpaG is a type III-secreted elicitor protein of Xanthomonas axonopodis pv. glycines. We have determined the critical amino acid residues important for hypersensitive response (HR) elicitation by random and site-directed mutagenesis of HpaG and its homolog XopA. A plasmid clone carrying hpaG was mutagenized by site-directed mutagenesis, hydroxylamine mutagenesis, and error-prone PCR. A total of 52 mutants were obtained, including 51 single missense mutants and 1 double missense mutant. The HR elicitation activity was abolished in the two missense mutants [HpaG(L50P) and HpaG(L43P/L50P)]. Seven single missense mutants showed reduced activity, and the HR elicitation activity of the rest of the mutants was similar to that of wild-type HpaG. Mutational and deletion analyses narrowed the region essential for elicitor activity to the 23-amino-acid peptide (H2N-NQGISEKQLDQLLTQLIMALLQQ-COOH). A synthetic peptide of this sequence possessed HR elicitor activity at the same concentration as the HpaG protein. This region has 78 and 74% homology with 23- and 27-amino-acid regions of the HrpW harpin domains, respectively, from Pseudomonas and Erwinia spp. The secondary structure of the peptide is predicted to be an α-helix, as is the HrpW region that is homologous to HpaG. The predicted α-helix of HpaG is probably critical for the elicitation of the HR in tobacco plants. In addition, mutagenesis of a xopA gene yielded two gain-of-function mutants: XopA(F48L) and XopA(F48L/M52L). These results indicate that the 12 amino acid residues between L39 and L50 of HpaG have critical roles in HR elicitation in tobacco plants.


2011 ◽  
Vol 82 (5) ◽  
pp. 1086-1095 ◽  
Author(s):  
Galina Belevich ◽  
Juho Knuuti ◽  
Michael I. Verkhovsky ◽  
Mårten Wikström ◽  
Marina Verkhovskaya

Virology ◽  
2008 ◽  
Vol 379 (2) ◽  
pp. 324-334 ◽  
Author(s):  
Ming Tan ◽  
Ming Xia ◽  
Sheng Cao ◽  
Pengwei Huang ◽  
Tibor Farkas ◽  
...  

1989 ◽  
Vol 108 (5) ◽  
pp. 1657-1664 ◽  
Author(s):  
S J Gould ◽  
G A Keller ◽  
N Hosken ◽  
J Wilkinson ◽  
S Subramani

The firefly luciferase protein contains a peroxisomal targeting signal at its extreme COOH terminus (Gould et al., 1987). Site-directed mutagenesis of the luciferase gene reveals that this peroxisomal targeting signal consists of the COOH-terminal three amino acids of the protein, serine-lysine-leucine. When this tripeptide is appended to the COOH terminus of a cytosolic protein (chloramphenicol acetyltransferase), it is sufficient to direct the fusion protein into peroxisomes. Additional mutagenesis experiments reveal that only a limited number of conservative changes can be made in this tripeptide targeting signal without abolishing its activity. These results indicate that peroxisomal protein import, unlike other types of transmembrane translocation, is dependent upon a conserved amino acid sequence.


1987 ◽  
Vol 242 (3) ◽  
pp. 645-653 ◽  
Author(s):  
M E Gent ◽  
A M Gronenborn ◽  
R W Davies ◽  
G M Clore

Mutants in the DNA-binding helix of the cyclic AMP receptor protein (CRP), as well as mutants in a synthetic DNA-binding site derived from the sequence in the lac regulatory region, have been constructed by oligonucleotide-directed mutagenesis, and used to study the effect of selected amino acid substitutions on CRP-mediated transcriptional activity and on sequence-specific DNA binding. It has been shown that mutation of Arg-180 to Lys or Leu abolishes both CRP-mediated expression of beta-galactosidase in vivo and CRP binding of DNA as measured by immunoprecipitation. In contrast, the mutation of Arg-185 to Leu or Lys and the mutation of Lys-188 to Leu does not appear to influence these two parameters significantly. On the DNA side, both substitutions studied, namely the exchange of the G . C base pair in position 2 of the consensus T1G2T3G4A5 motif into an A . T base pair and the exchange of the A . T base pair in position 5 for a G . C base pair, abolish specific binding. Implications of these findings with respect to the present models for specific CRP-DNA recognition are discussed.


1998 ◽  
Vol 72 (3) ◽  
pp. 2544-2547 ◽  
Author(s):  
Tillmann Rümenapf ◽  
Robert Stark ◽  
Manuela Heimann ◽  
Heinz-Jürgen Thiel

ABSTRACT Pestiviruses are the only members of the Flaviviridaethat encode a nonstructural protease at the N terminus of their polyproteins. This N-terminal protease (Npro) cleaves itself off of the nascent polyprotein autocatalytically and thereby generates the N terminus of the adjacent viral capsid protein C. In previous reports, sequence similarities between Npro and the catalytic residues of papain-like cysteine proteases were put forward. To test this hypothesis, substitutions of cysteine and histidine residues within Npro were carried out by site-directed mutagenesis. Translation of the mutagenized Npro-C proteins in cell-free lysates confirmed that only the predicted Cys69 was an essential amino acid for proteolysis, not His130. Further essential residues were identified with His49 and Glu22. While it remains speculative whether Glu22-His49-Cys69 actually build a catalytic triad, these results invalidate the assumption that Npro is a papain-like cysteine protease.


1994 ◽  
Vol 14 (5) ◽  
pp. 2946-2957 ◽  
Author(s):  
T Raabe ◽  
K G Murthy ◽  
J L Manley

Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS.


1997 ◽  
Vol 17 (8) ◽  
pp. 4654-4666 ◽  
Author(s):  
K N Huang ◽  
S A Odinsky ◽  
F R Cross

We have generated 50 new alleles of the yeast CLN2 gene by using site-directed mutagenesis. With the recently obtained crystal structure of cyclin A as a guide, a peptide linker sequence was inserted at 13 sites within the cyclin box of Cln2 to determine if the architecture of Cln2 is similar to that of cyclin A. Linkers inserted in what are predicted to be helices 1, 2, 3, and 5 of the cyclin box resulted in nonfunctional Cln2 molecules. Linkers inserted between these putative helix sites and in the region believed to contain a fourth helix did not have significant effects upon Cln2 function. A series of deletions in the region between the third and fifth helices indicate that the putative fourth helix may lie at the C-terminal end of this region yet is not essential for function. Two residues that are predicted to form a buried salt bridge important for interaction of two helices of the cyclin box were also mutated, and an additional set of 31 mutant alleles was generated by clustered-charge-to-alanine scanning mutagenesis. All of the mutant CLN2 alleles made in this study were tested in a variety of genetic and functional assays previously demonstrated to differentiate specific cyclin functions. Some alleles demonstrated restricted patterns of defects, suggesting that these mutations may interfere with specific aspects of Cln2 function.


Sign in / Sign up

Export Citation Format

Share Document