scholarly journals A Novel Human Cytomegalovirus Glycoprotein, gpUS9, Which Promotes Cell-to-Cell Spread in Polarized Epithelial Cells, Colocalizes with the Cytoskeletal Proteins E-Cadherin and F-Actin

1998 ◽  
Vol 72 (7) ◽  
pp. 5717-5727 ◽  
Author(s):  
Ekaterina Maidji ◽  
Sharof Tugizov ◽  
Gerardo Abenes ◽  
Thomas Jones ◽  
Lenore Pereira

ABSTRACT Processes by which human herpesviruses penetrate and are released from polarized epithelial cells, which have distinct apical and basolateral membrane domains differing in protein and lipid content, are poorly understood. We recently reported that human cytomegalovirus (CMV) mutants with deletions of the gene US9 formed wild-type plaques in cultures of human fibroblasts but were impaired in the capacity for cell-to-cell spread in polarized human retinal pigment epithelial cells. Unlike the glycoproteins that are required for infection, the protein encoded by CMV US9 plays an accessory role by promoting dissemination of virus across cell-cell junctions of polarized epithelial cells. To identify the product and investigate its specialized functions, we selected Madine-Darby canine kidney II (MDCK) epithelial cells that constitutively express CMV US9 or, as a control, US8. The gene products, designated gpUS9 and gpUS8, were glycosylated proteins of comparable molecular masses but differed considerably in intracellular distribution and solubility. Immunofluorescence laser scanning confocal microscopy indicated that, like gpUS8, gpUS9 was present in the endoplasmic reticulum and Golgi compartments of nonpolarized cells. In polarized epithelial cells, gpUS9 also accumulated along lateral membranes, colocalizing with cadherin and actin, and was insoluble in Triton X-100, a property shared with proteins that associate with the cytoskeleton. We hypothesize that gpUS9 may enhance the dissemination of CMV in infected epithelial tissues by associating with the cytoskeletal matrix.

2001 ◽  
Vol 167 (4) ◽  
pp. 1900-1908 ◽  
Author(s):  
Jindrich Cinatl ◽  
Stefan Margraf ◽  
Jens-Uwe Vogel ◽  
Martin Scholz ◽  
Jaroslav Cinatl ◽  
...  

2007 ◽  
Vol 82 (5) ◽  
pp. 2170-2181 ◽  
Author(s):  
Anders E. Lilja ◽  
W. L. William Chang ◽  
Peter A. Barry ◽  
S. Patricia Becerra ◽  
Thomas E. Shenk

ABSTRACT Rhesus cytomegalovirus (RhCMV) is an emerging model for human cytomegalovirus (HCMV) pathogenesis that facilitates experimental CMV infection of a natural primate host closely related to humans. We have generated a library of RhCMV mutants with lesions in genes whose HCMV orthologues have been characterized as nonessential for replication in human fibroblasts, and we characterized their replication in rhesus fibroblasts and epithelial cells. The RhCMV mutants grew well in fibroblasts, as predicted by earlier studies with HCMV. However, mutations in four genes caused replication defects in rhesus retinal pigment epithelial cells: Rh01 (an HCMV TRL1 orthologue), Rh159 (HCMV UL148), Rh160 (HCMV UL132), and Rh203 (HCMV US22). Growth of the Rh01-deficient mutant was examined in detail. After entry into epithelial cells, the mutant expressed representative viral proteins, accumulated viral DNA, and generated infectious virus, but it failed to spread efficiently. We conclude that Rh01 is a cell tropism determinant that has the potential to dramatically affect virus spread and pathogenesis.


2002 ◽  
Vol 76 (11) ◽  
pp. 5748-5758 ◽  
Author(s):  
Mary T. Huber ◽  
Roman Tomazin ◽  
Todd Wisner ◽  
Jessica Boname ◽  
David C. Johnson

ABSTRACT Human cytomegalovirus (HCMV) expresses a large number of membrane proteins with unknown functions. One class of these membrane proteins apparently acts to allow HCMV to escape detection by the immune system. The best characterized of these are the glycoproteins encoded within the US2 to US11 region of the HCMV genome that mediate resistance to CD8+ and CD4+ T cells. US2, US3, US6, and US11 block various aspects of the major histocompatibility complex (MHC) class I and class II antigen presentation pathways, functioning in cytoplasmic membranes to cause retention, degradation, or mislocalization of MHC proteins. Distantly homologous genes in this region, US7, US8, US9, and US10, are not well characterized. Here, we report expression of the glycoproteins encoded by US7 to US10 by using replication-defective adenovirus (Ad) vectors. US7, US9, and US10 remained sensitive to endoglycosidase H and were exclusively or largely present in the endoplasmic reticulum (ER) as determined by confocal microscopy. US8 reached the Golgi apparatus and trans-Golgi network and was more quickly degraded. Previous studies suggested that US9 could localize to cell junctions and mediate cell-to-cell spread in ARPE-19 retinal epithelial cells. We found no evidence of US9 at cell junctions of HEC-1A epithelial cells. HCMV recombinants lacking US9 produced smaller plaques on ARPE-19 cell monolayers but also exhibited defects in virus replication compared with wild-type HCMV in these cells. Other HCMV recombinants constructed in a similar fashion that were able to express US9 also produced small plaques and some of these exhibited defects in production of infectious progeny in ARPE-19 cells. Thus, there was no correlation between defects in cell-to-cell spread (plaque size) and loss of expression of US9, and it is possible that US9− mutants produce smaller plaques because they produce fewer progeny. Together, our results do not support the hypothesis that US9 plays a direct role in HCMV cell-to-cell spread.


1998 ◽  
Vol 72 (9) ◽  
pp. 7374-7386 ◽  
Author(s):  
Sharof Tugizov ◽  
Ekaterina Maidji ◽  
Jianqiao Xiao ◽  
Zhenwei Zheng ◽  
Lenore Pereira

ABSTRACT We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is vectorially transported to apical membranes of CMV-infected polarized human retinal pigment epithelial cells propagated on permeable filter supports and that virions egress predominantly from the apical membrane domain. In the present study, we investigated whether gB itself contains autonomous information for apical transport by expressing the molecule in stably transfected Madine-Darby canine kidney (MDCK) cells grown on permeable filter supports. Laser scanning confocal immunofluorescence microscopy and domain-selective biotinylation of surface membrane domains showed that CMV gB was transported to apical membranes independently of other envelope glycoproteins and that it colocalized with proteins in transport vesicles of the biosynthetic and endocytic pathways. Determinants for trafficking to apical membranes were located by evaluating the targeting of gB derivatives with deletions in the lumen, transmembrane (TM) anchor, and carboxyl terminus. Derivative gB(Δ717-747), with an internal deletion in the luminal juxtamembrane sequence that preserved the N- andO-glycosylation sites, retained vectorial transport to apical membranes. In contrast, derivatives that lacked the TM anchor and cytosolic domain (gBΔ646-906) or the TM anchor alone (gBΔ751-771) underwent considerable basolateral targeting. Likewise, derivatives lacking the entire cytosolic domain (gBΔ772-906) or the last 73 amino acids (gBΔ834-906) showed disrupted apical transport. Site-specific mutations that deleted or altered the cluster of acidic residues with a casein kinase II phosphorylation site at the extreme carboxyl terminus, which can serve as an internalization signal, caused partial missorting of gB to basolateral membranes. Our studies indicate that CMV gB contains autonomous information for apical targeting in luminal, TM anchor, and cytosolic domain sequences, forming distinct structural elements that cooperate in vectorial transport in polarized epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document