scholarly journals Mucosal but Not Parenteral Immunization with Purified Human Papillomavirus Type 16 Virus-Like Particles Induces Neutralizing Titers of Antibodies throughout the Estrous Cycle of Mice

1999 ◽  
Vol 73 (11) ◽  
pp. 9609-9613 ◽  
Author(s):  
Denise Nardelli-Haefliger ◽  
Richard Roden ◽  
Carole Balmelli ◽  
Alexandra Potts ◽  
John Schiller ◽  
...  

ABSTRACT We have recently shown that nasal immunization of anesthetized mice with human papillomavirus type 16 (HPV16) virus-like particles (VLPs) is highly effective at inducing both neutralizing immunoglobulin A (IgA) and IgG in genital secretions, while parenteral immunization induced only neutralizing IgG. Our data also demonstrated that both isotypes are similarly neutralizing according to an in vitro pseudotyped neutralization assay. However, it is known that various amounts of IgA and IgG are produced in genital secretions along the estrous cycle. Therefore, we have investigated how this variation influences the amount of HPV16 neutralizing antibodies induced after immunization with VLPs. We have compared parenteral and nasal protocols of vaccination with daily samplings of genital secretions of mice. Enzyme-linked immunosorbent assay analysis showed that total IgA and IgG inversely varied along the estrous cycle, with the largest amounts of IgA in proestrus-estrus and the largest amount of IgG in diestrus. This resulted in HPV16 neutralizing titers of IgG only being achieved during diestrus upon parenteral immunization. In contrast, nasal vaccination induced neutralizing titers of IgA plus IgG throughout the estrous cycle, as confirmed by in vitro pseudotyped neutralization assays. Our data suggest that mucosal immunization might be more efficient than parenteral immunization at inducing continuous protection of the female genital tract.

1998 ◽  
Vol 72 (10) ◽  
pp. 8220-8229 ◽  
Author(s):  
Carole Balmelli ◽  
Richard Roden ◽  
Alexandra Potts ◽  
John Schiller ◽  
Pierre De Grandi ◽  
...  

ABSTRACT To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 μg of VLP given at weekly intervals to anesthetized mice induced high (>104) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-μg VLP systemic priming followed by two 5-μg VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.


1998 ◽  
Vol 72 (2) ◽  
pp. 959-964 ◽  
Author(s):  
Wendy I. White ◽  
Susan D. Wilson ◽  
William Bonnez ◽  
Robert C. Rose ◽  
Scott Koenig ◽  
...  

ABSTRACT Human papillomavirus type 16 (HPV-16) is strongly associated with the development of cervical cancer. Studies of model systems with animal papillomaviruses have demonstrated the importance of neutralizing antibodies in preventing papillomavirus-associated disease. The assessment of neutralizing antibody responses against HPV-16, previously hampered by the lack of a viral source, was enabled by the recent propagation of an HPV-16 stock in xenografted severe combined immunodeficiency (SCID) mice. HPV-16 infection of an immortalized human keratinocyte cell line was demonstrated by detection of an HPV-16-specific spliced mRNA amplified by reverse transcriptase PCR. Infection was blocked by preincubation of the virus with antiserum generated against HPV-16 virus-like particles (VLPs) composed of the major capsid protein, L1. To examine potential cross-neutralizing activity among the different genital HPV types, rabbit antisera to L1 VLPs corresponding to HPV-6, -11, -18, -31, -33, -35, -39, and -45 were assayed for the ability to block the HPV-16 infection of cultured cells. Antiserum raised against HPV-33 L1 VLPs was the only heterologous antiserum which inhibited HPV-16 infection. Thus, a neutralization assay for HPV-16 may help to characterize the components required to compose a broadly efficacious genital HPV vaccine.


2012 ◽  
Vol 19 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Patricia M. Day ◽  
Yuk-Ying S. Pang ◽  
Rhonda C. Kines ◽  
Cynthia D. Thompson ◽  
Douglas R. Lowy ◽  
...  

ABSTRACTPapillomavirus L2-based vaccines have generally induced low-level or undetectable neutralizing antibodies in standardin vitroassays yet typically protect well againstin vivoexperimental challenge in animal models. Herein we document that mice vaccinated with an L2 vaccine comprising a fusion protein of the L2 amino acids 11 to 88 of human papillomavirus type 16 (HPV16), HPV18, HPV1, HPV5, and HPV6 were uniformly protected from cervicovaginal challenge with HPV16 pseudovirus, but neutralizing antibodies against HPV16, -31, -33, -45, or -58 were rarely detected in their sera using a standardin vitroneutralization assay. To address this discrepancy, we developed a neutralization assay based on anin vitroinfectivity mechanism that more closely mimics thein vivoinfectious process, specifically by spaciotemporally separating primary and secondary receptor engagement and correspondingly by altering the timing of exposure of the dominant L2 cross-neutralizing epitopes to the antibodies. With the new assay, titers in the 100 to 10,000 range were measured for most sera, whereas undetectable neutralizing activities were observed with the standard assay.In vitroneutralizing titers measured in the serum of mice after passive transfer of rabbit L2 immune serum correlated with protection from cervicovaginal challenge of the mice. This “L2-based”in vitroneutralization assay should prove useful in critically evaluating the immunogenicity of L2 vaccine candidates in preclinical studies and future clinical trials.


2006 ◽  
Vol 72 (1) ◽  
pp. 745-752 ◽  
Author(s):  
Karina Araujo Aires ◽  
Aurora Marques Cianciarullo ◽  
Sylvia Mendes Carneiro ◽  
Luisa Lina Villa ◽  
Enrique Boccardo ◽  
...  

ABSTRACT Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.


2007 ◽  
Vol 15 (1) ◽  
pp. 172-175 ◽  
Author(s):  
Maxime J. J. Fleury ◽  
Antoine Touzé ◽  
Silvia de Sanjosé ◽  
F. Xavier Bosch ◽  
Joellen Klaustermeiyer ◽  
...  

ABSTRACT The aim of this study was to develop a highly sensitive human papillomavirus type 31 (HPV31) neutralization assay based on the production of pseudovirions carrying luciferase. Neutralizing antibodies against HPV31 were investigated in a set of HPV31 monoclonal antibodies and in women with evidence of HPV31 infection. Neutralizing antibodies were detected in 78% of subjects with a positive enzyme-linked immunosorbent assay.


2006 ◽  
Vol 80 (10) ◽  
pp. 4664-4672 ◽  
Author(s):  
Joseph J. Carter ◽  
Greg C. Wipf ◽  
Margaret M. Madeleine ◽  
Stephen M. Schwartz ◽  
Laura A. Koutsky ◽  
...  

ABSTRACT The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.


Sign in / Sign up

Export Citation Format

Share Document