scholarly journals Epithelial Cell Adhesion to Extracellular Matrix Proteins Induces Tyrosine Phosphorylation of the Epstein-Barr Virus Latent Membrane Protein 2: a Role for C-Terminal Src Kinase

1999 ◽  
Vol 73 (6) ◽  
pp. 4767-4775 ◽  
Author(s):  
Frank Scholle ◽  
Richard Longnecker ◽  
Nancy Raab-Traub

ABSTRACT The Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2) is expressed in latently EBV-infected B cells, where it forms patches in the plasma membrane and interferes with B-cell receptor signal transduction through dominant-negative effects on protein kinases. LMP2 transcripts are detected in nasopharyngeal carcinoma, an epithelial-cell malignancy. In this study the function of LMP2A in epithelial cells was investigated. LMP2A was found to coprecipitate with protein kinase activities and to become phosphorylated in in vitro kinase assays. Analysis of LMP2A deletion mutants demonstrated that tyrosines implicated in interacting with Src family kinase SH2 domains and the SH2 domain of Csk, as well as the LMP2A immunoreceptor tyrosine-based activation motif, are important for its phosphorylation in epithelial cells. LMP2A tyrosine phosphorylation was triggered by cell adhesion to extracellular-matrix (ECM) proteins. Src family kinases, whose involvement in cell-ECM signaling and LMP2A phosphorylation in B lymphocytes has been well established, were found not to be responsible for LMP2A phosphorylation in epithelial cells. Instead, coexpression of Csk, a negative Src regulator, and LMP2A led to an increase in LMP2A phosphorylation both in nonadherent cells and upon cell adhesion. Csk also phosphorylated LMP2A in vitro. These results suggest that LMP2A has a different role in epithelial cells, where it interacts with cell adhesion-initiated signaling pathways. Although tyrosine phosphorylation of LMP2A occurs in both cell types, different protein kinases seem to be used: Src family kinases in B lymphocytes and Csk in epithelial cells.

2008 ◽  
Vol 16 (11) ◽  
pp. 520-527 ◽  
Author(s):  
Markus P. Rechsteiner ◽  
Michele Bernasconi ◽  
Christoph Berger ◽  
David Nadal

2000 ◽  
Vol 74 (11) ◽  
pp. 5151-5160 ◽  
Author(s):  
Bo Zhao ◽  
Clare E. Sample

ABSTRACT The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) protein is a transcriptional regulator of viral and cellular genes that is essential for EBV-mediated immortalization of B lymphocytes in vitro. EBNA-3C can inhibit transcription through an association with the cellular DNA-binding protein Jκ, a function shared by EBNA-3A and EBNA-3B. Here, we report a mechanism by which EBNA-3C can activate transcription from the EBV latent membrane protein 1 (LMP-1) promoter in conjunction with EBNA-2. Jκ DNA-binding sites were not required for this activation, and a mutant EBNA-3C protein unable to bind Jκ activated transcription as efficiently as wild-type EBNA-3C, indicating that EBNA-3C can regulate transcription through a mechanism that is independent of Jκ. Furthermore, activation of the LMP-1 promoter is a unique function of EBNA-3C, not shared by EBNA-3A and EBNA-3B. The DNA element through which EBNA-3C activates the LMP-1 promoter includes a Spi-1/Spi-B binding site, previously characterized as an important EBNA-2 response element. Although this element has considerable homology to mouse immunoglobulin light chain promoter sequences to which the mouse homologue of Spi-1 binds with its dimerization partner IRF4, we demonstrate that the IRF4-like binding sites in the LMP-1 promoter do not play a role in EBNA-3C-mediated activation. Both EBNA-2 and EBNA-3C were required for transcription mediated through a 41-bp region of the LMP-1 promoter encompassing the Spi binding site. However, EBNA-3C had no effect on transcription mediated in conjunction with the EBNA-2 activation domain fused to the GAL4 DNA-binding domain, suggesting that it does not function as an adapter between EBNA-2 and the cellular transcriptional machinery. Like EBNA-2, EBNA-3C bound directly to both Spi-1 and Spi-B in vitro. This interaction was mediated by a region of EBNA-3C encompassing a likely basic leucine zipper (bZIP) domain and the ets domain of Spi-1 or Spi-B, reminiscent of interactions between bZIP and ets domains of other transcription factors that result in their targeting to DNA. There are many examples of regulation of the hematopoietic-specific Spi transcription factors through protein-protein interactions, and a similar regulation by EBNA-3C, in conjunction with EBNA-2, is likely to be an important and unique contribution of EBNA-3C to EBV-mediated immortalization.


Sign in / Sign up

Export Citation Format

Share Document