scholarly journals The Human Papillomavirus Type 16 E6 Oncoprotein Can Down-Regulate p53 Activity by Targeting the Transcriptional Coactivator CBP/p300

1999 ◽  
Vol 73 (8) ◽  
pp. 6209-6219 ◽  
Author(s):  
Holger Zimmermann ◽  
Roland Degenkolbe ◽  
Hans-Ulrich Bernard ◽  
Mark J. O’Connor

ABSTRACT The transforming proteins of the small DNA tumor viruses, simian virus 40 (SV40), adenovirus, and human papillomavirus (HPV) target a number of identical cellular regulators whose functional abrogation is required for transformation. However, while both adenovirus E1A and SV40 large T transforming properties also depend on the targeting of the transcriptional coactivator CBP/p300, no such interaction has been described for the HPV oncoprotein E6 or E7. Here, we demonstrate that the HPV-16 E6 protein, previously shown to facilitate the degradation of p53 in a complex with E6-associated protein (E6AP), also targets CBP/p300 in an interaction involving the C-terminal zinc finger of E6 and CBP residues 1808 to 1826. Furthermore, this interaction is limited to E6 proteins of high-risk HPVs associated with cervical cancer that have the capacity to repress p53-dependent transcription. An HPV-16 E6 mutant (L50G) that binds CBP/p300, but not E6AP, is still capable of down-regulating p53 transcriptional activity. Thus, HPV E6 proteins possess two distinct mechanisms by which to abrogate p53 function: the repression of p53 transcriptional activity by targeting the p53 coactivator CBP/p300, and the removal of cellular p53 protein through the proteosome degradation pathway.

1993 ◽  
Vol 13 (10) ◽  
pp. 6537-6546 ◽  
Author(s):  
M Arroyo ◽  
S Bagchi ◽  
P Raychaudhuri

The transcription factor E2F has been shown to be involved in the expression of several cell cycle-regulated genes, and the activity of this factor is controlled by cellular proteins such as pRB and p107. E2F is also a target of the DNA virus oncoproteins (adenovirus E1A, simian virus 40 T antigen, and human papillomavirus [HPV] E7) (see the review by J. R. Nevins [Science 258: 424-429, 1992]). These viral oncoproteins dissociate an inactive complex between E2F and the retinoblastoma tumor suppressor protein (pRB), and this dissociation of the E2F-pRB complex correlates with a stimulation of the E2F-dependent transcription. In the S phase of the cell cycle, E2F forms a complex with p107, cyclin A, and the cdk2 kinase (E2F-cyclin A complex). The cellular function of this S-phase-specific complex is unclear. The adenovirus E1A protein dissociates the E2F-cyclin A complex. The HPV type 16 (HPV-16) E7 protein, which possesses significant sequence homology with E1A, does not dissociate the E2F-cyclin A complex. We find that the HPV-16 E7 protein associates very efficiently with the E2F-cyclin A complex. This association is dependent on the sequences that are also necessary for the transforming activity of E7. Moreover, the E7 protein of a low-risk HPV (type 6b) is much less efficient in binding to the E2F-cyclin A complex compared with that of the high-risk type. We also find that the E2F-cyclin A complex remains endogenously associated with the E7 protein in extracts of Caski cells, which express high levels of HPV-16 E7 protein. Finally, we have extensively purified the E2F-cyclin A complex from mouse L-cell extracts and show that, in cell extracts, the E2F-cyclin A complex remains associated with other cellular proteins.


1993 ◽  
Vol 13 (10) ◽  
pp. 6537-6546 ◽  
Author(s):  
M Arroyo ◽  
S Bagchi ◽  
P Raychaudhuri

The transcription factor E2F has been shown to be involved in the expression of several cell cycle-regulated genes, and the activity of this factor is controlled by cellular proteins such as pRB and p107. E2F is also a target of the DNA virus oncoproteins (adenovirus E1A, simian virus 40 T antigen, and human papillomavirus [HPV] E7) (see the review by J. R. Nevins [Science 258: 424-429, 1992]). These viral oncoproteins dissociate an inactive complex between E2F and the retinoblastoma tumor suppressor protein (pRB), and this dissociation of the E2F-pRB complex correlates with a stimulation of the E2F-dependent transcription. In the S phase of the cell cycle, E2F forms a complex with p107, cyclin A, and the cdk2 kinase (E2F-cyclin A complex). The cellular function of this S-phase-specific complex is unclear. The adenovirus E1A protein dissociates the E2F-cyclin A complex. The HPV type 16 (HPV-16) E7 protein, which possesses significant sequence homology with E1A, does not dissociate the E2F-cyclin A complex. We find that the HPV-16 E7 protein associates very efficiently with the E2F-cyclin A complex. This association is dependent on the sequences that are also necessary for the transforming activity of E7. Moreover, the E7 protein of a low-risk HPV (type 6b) is much less efficient in binding to the E2F-cyclin A complex compared with that of the high-risk type. We also find that the E2F-cyclin A complex remains endogenously associated with the E7 protein in extracts of Caski cells, which express high levels of HPV-16 E7 protein. Finally, we have extensively purified the E2F-cyclin A complex from mouse L-cell extracts and show that, in cell extracts, the E2F-cyclin A complex remains associated with other cellular proteins.


2002 ◽  
Vol 83 (4) ◽  
pp. 829-833 ◽  
Author(s):  
Agnieszka Bernat ◽  
Paola Massimi ◽  
Lawrence Banks

Previous studies have shown that the human papillomavirus type 16 (HPV-16) E6 protein binds to p300/CBP and abrogates its transcriptional co-activator function. However, there is little information on the biological consequences of this interaction and discrepancy as to whether the interaction is high-risk E6 specific or not. We performed a series of studies to compare the interactions of HPV-18 and HPV-11 E6 with p300, and showed that both high- and low- risk E6 proteins bind p300. In addition, using a transformation-deficient mutant of adenovirus E1a, which cannot interact with p300, we demonstrated that HPV-16, HPV-18 and, to a lesser extent, HPV-11 E6, can complement this mutant in cell transformation assays. In contrast, a mutant of HPV-16 E6 which does not bind p300 failed to rescue the E1a mutant. These results suggest that the E6–p300 interaction may be important for the ability of HPV E6 to contribute towards cell transformation.


1984 ◽  
Vol 4 (2) ◽  
pp. 232-239
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


1991 ◽  
Vol 11 (4) ◽  
pp. 1996-2003 ◽  
Author(s):  
K H Scheidtmann ◽  
M C Mumby ◽  
K Rundell ◽  
G Walter

Simian virus 40 (SV40) large-T antigen and the cellular protein p53 were phosphorylated in vivo by growing cells in the presence of 32Pi. The large-T/p53 complex was isolated by immunoprecipitation and used as a substrate for protein phosphatase 2A (PP2A) consisting of the catalytic subunit (C) and the two regulatory subunits, A and B. Three different purified forms of PP2A, including free C, the AC form, and the ABC form, could readily dephosphorylate both proteins. With both large-T and p53, the C subunit was most active, followed by the AC form, which was more active than the ABC form. The activity of all three forms of PP2A toward these proteins was strongly stimulated by manganese ions and to a lesser extent by magnesium ions. The presence of complexed p53 did not affect the dephosphorylation of large-T antigen by PP2A. The dephosphorylation of individual phosphorylation sites of large-T and p53 were determined by two-dimensional peptide mapping. Individual sites within large-T and p53 were dephosphorylated at different rates by all three forms of PP2A. The phosphates at Ser-120 and Ser-123 of large-T, which affect binding to the origin of SV40 DNA, were removed most rapidly. Three of the six major phosphopeptides of p53 were readily dephosphorylated, while the remaining three were relatively resistant to PP2A. Dephosphorylation of most of the sites in large-T and p53 by the AC form was inhibited by SV40 small-t antigen. The inhibition was most apparent for those sites which were preferentially dephosphorylated. Inhibition was specific for the AC form; no effect was observed on the dephosphorylation of either protein by the free C subunit or the ABC form. The inhibitory effect of small-t on dephosphorylation by PP2A could explain its role in transformation.


1986 ◽  
Vol 6 (6) ◽  
pp. 2020-2026
Author(s):  
M R Loeken ◽  
G Khoury ◽  
J Brady

We have examined the ability of simian virus 40 T antigen to stimulate transcription from the adenovirus E2 promoter. T antigen, produced from a cotransfected plasmid, stimulated chloramphenicol acetyltransferase enzyme and mRNA production from an E2 promoter-chloramphenicol acetyltransferase fusion plasmid (pEC113) in monkey kidney CV-1 cells. The level of stimulation of E2 transcription by simian virus 40 T antigen was equal to that observed in cotransfections of pEC113 and the adenovirus E1A gene product. Deletion mutations from the 5' end of the E2 promoter were examined for their ability to express basal, T-antigen, or E1A trans-activated promoter activity. In each case, deletion of upstream promoter sequences to -70 base pairs reduced chloramphenicol acetyltransferase expression to approximately 30% of the level observed with the intact E2 promoter. Deletion to -59 base pairs resulted in chloramphenicol acetyltransferase expression that was 3 to 5% of that observed with the intact E2 promoter. At saturating levels of the stimulatory proteins, the chloramphenicol acetyltransferase levels obtained in response to T antigen and adenovirus E1A were additive. COS-1 cells, which are derived from CV-1 cells and constitutively express simian virus 40 T antigen, do not support E2 promoter trans activation by T antigen. E1A trans activation of the E2 promoter is efficient in COS-1 cells. These results suggest that although promoter sequence requirements are similar, T antigen and E1A trans activate the E2 promoter by different mechanisms.


1990 ◽  
Vol 10 (12) ◽  
pp. 6664-6673
Author(s):  
T E Riley ◽  
A Follin ◽  
N C Jones ◽  
P S Jat

Various mutants of adenovirus E1A were assayed for their ability to complement the growth defect at the nonpermissive temperature for the cell line tsa14 which was isolated by immortalizing rat embryo fibroblasts with the thermolabile large T antigen of tsA58. This cell line grows indefinitely at the permissive temperature but undergoes rapid growth arrest upon shift up to the nonpermissive temperature. Since this growth arrest can be overcome by introduction of wild-type simian virus 40 large T antigen, human papillomavirus 16 E7, and adenovirus E1A, the tsa14 cells provided an excellent system for defining regions of E1A necessary for complementation of the growth defect. We demonstrate that conserved region 1 (CR1) is the region of E1A required for complementation. While CR2 of E1A has been shown to be required for the immortalization of primary cells and is also necessary for the binding of the 105-kDa retinoblastoma protein, mutations within this region did not abrogate complementation of the growth defect. However, since both CR1 and CR2 have previously been shown to be absolutely required for immortalization of primary cells by adenovirus E1A, this evidence suggests that the tsa14 system assays for the maintenance of proliferation and that this requires CR1.


1991 ◽  
Vol 11 (4) ◽  
pp. 2116-2124
Author(s):  
P Yaciuk ◽  
M C Carter ◽  
J M Pipas ◽  
E Moran

In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.


Sign in / Sign up

Export Citation Format

Share Document