scholarly journals Novel Tat-Encoding Bicistronic Human Immunodeficiency Virus Type 1-Based Gene Transfer Vectors for High-Level Transgene Expression

2000 ◽  
Vol 74 (14) ◽  
pp. 6659-6668 ◽  
Author(s):  
Narasimhachar Srinivasakumar ◽  
Friedrich Schuening

ABSTRACT We describe bicistronic single-exon Tat (72-amino-acid Tat [Tat72])- and full-length Tat (Tat86)-encoding gene transfer vectors based on human immunodeficiency virus type 1 (HIV-1). We created versions of these vectors that were rendered Rev independent by using the constitutive transport element (CTE) from Mason-Pfizer monkey virus (MPMV). Tat72-encoding vectors performed better than Tat86-expressing vectors in gene transfer experiments. CTE-containing vectors, produced in a Rev-independent packaging system, had gene transfer efficiencies nearly equivalent to those produced using a combination RNA transport (CTE and Rev-Rev response element)-based packaging system. The Tat72-encoding vectors could be efficiently transduced into a variety of cell types, showed higher levels of transgene expression than vectors with the simian cytomegalovirus immediate-early or the simian virus 40 early promoter, and provide an alternative to HIV-1 vectors with internal promoters.

1998 ◽  
Vol 72 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Zaher Hanna ◽  
Denis G. Kay ◽  
Marc Cool ◽  
Serge Jothy ◽  
Najet Rebai ◽  
...  

ABSTRACT We have constructed transgenic (Tg) mice expressing the entire human immunodeficiency virus type 1 (HIV-1) coding sequences in cells targeted by HIV-1 infection in humans. These Tg mice developed a severe AIDS-like disease leading to early death (<1 month). They developed muscle wasting, severe atrophy and fibrosis of lymphoid organs, tubulointerstitial nephritis, and lymphoid interstitial pneumonitis. In addition the expression of RANTES was increased in various tissues of these Tg mice relative to that in the normal controls. Disease appearance was correlated with the levels of transgene expression. The numerous pathologies observed in these mice are remarkably similar to those observed in human AIDS and, more specifically, in pediatric AIDS.


1994 ◽  
Vol 70 (6) ◽  
Author(s):  
Marisa Márcia Mussi-Pinhata ◽  
Maria Célia C. Ferez ◽  
Dimas T. Covas ◽  
Geraldo Duarte ◽  
Márcia L. Isaac ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1798
Author(s):  
Grant R. Campbell ◽  
Stephen A. Spector

Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.


2013 ◽  
Vol 94 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Elly Baan ◽  
Renée M. van der Sluis ◽  
Margreet E. Bakker ◽  
Vincent Bekker ◽  
Dasja Pajkrt ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) envelope protein provides the primary contact between the virus and host, and is the main target of the adaptive humoral immune response. The length of gp120 variable loops and the number of N-linked glycosylation events are key determinants for virus infectivity and immune escape, while the V3 loop overall positive charge is known to affect co-receptor tropism. We selected two families in which both parents and two children had been infected with HIV-1 for nearly 10 years, but who demonstrated variable parameters of disease progression. We analysed the gp120 envelope sequence and compared individuals that progressed to those that did not in order to decipher evolutionary alterations that are associated with disease progression when individuals are infected with genetically related virus strains. The analysis of the V3-positive charge demonstrated an association between higher V3-positive charges with disease progression. The ratio between the amino acid length and the number of potential N-linked glycosylation sites was also shown to be associated with disease progression with the healthier family members having a lower ratio. In conclusion in individuals initially infected with genetically linked virus strains the V3-positive charges and N-linked glycosylation are associated with HIV-1 disease progression and follow varied evolutionary paths for individuals with varied disease progression.


Sign in / Sign up

Export Citation Format

Share Document