scholarly journals Interaction of the Adenovirus IVa2 Protein with Viral Packaging Sequences

2000 ◽  
Vol 74 (6) ◽  
pp. 2687-2693 ◽  
Author(s):  
Wei Zhang ◽  
Michael J. Imperiale

ABSTRACT We have demonstrated previously that the adenovirus L1 52/55-kDa protein binds to the viral IVa2 protein in infected cells. The significance of this interaction was unclear, however, based on the known functions of these two proteins: the 52/55-kDa protein is required for viral DNA packaging, while the IVa2 protein is a transactivator of the major late promoter (MLP). In this report, we have attempted to elucidate a role for each of the two proteins in the other's known function. There is no apparent effect of the 52/55-kDa protein on the interaction of the IVa2 protein with the MLP. Surprisingly, however, we found that the IVa2 protein can interact with the adenoviral packaging signal and that this interaction involves DNA sequences that have previously been demonstrated to be required for packaging.

2020 ◽  
Author(s):  
Joshua Pajak ◽  
Rockney Atz ◽  
Brendan J. Hilbert ◽  
Marc C. Morais ◽  
Brian A. Kelch ◽  
...  

SummaryMany viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in apo, ATP-bound, and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an inactive to an active pose upon ATP binding, and that a residue assigned as the glutamate switch is necessary for regulating the transition. Further, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental data. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the predicted structural coupling from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway in viral DNA packaging motors that ensures coordination between chemical and mechanical events involved in viral DNA packaging.


2009 ◽  
Vol 140 (1-3) ◽  
pp. 78-90 ◽  
Author(s):  
Teng-Chieh Yang ◽  
Qin Yang ◽  
Nasib Karl Maluf

2001 ◽  
Vol 75 (21) ◽  
pp. 10446-10454 ◽  
Author(s):  
Wei Zhang ◽  
Jonathan A. Low ◽  
Joan B. Christensen ◽  
Michael J. Imperiale

ABSTRACT Although it has been demonstrated that the adenovirus IVa2 protein binds to the packaging domains on the viral chromosome and interacts with the viral L1 52/55-kDa protein, which is required for viral DNA packaging, there has been no direct evidence demonstrating that the IVa2 protein is involved in DNA packaging. To understand in greater detail the DNA packaging mechanisms of adenovirus, we have asked whether DNA packaging is serotype or subgroup specific. We found that Ad7 (subgroup B), Ad12 (subgroup A), and Ad17 (subgroup D) cannot complement the defect of an Ad5 (subgroup C) mutant,pm8001, which does not package its DNA due to a mutation in the L1 52/55-kDa gene. This indicates that the DNA packaging systems of different serotypes cannot interact productively with Ad5 DNA. Based on this, a chimeric virus containing the Ad7 genome except for the inverted terminal repeats and packaging sequence from Ad5 was constructed. This chimeric virus replicates its DNA and synthesizes Ad7 proteins, but it cannot package its DNA in 293 cells or 293 cells expressing the Ad5 L1 52/55-kDa protein. However, this chimeric virus packages its DNA in 293 cells expressing the Ad5 IVa2 protein. These results indicate that the IVa2 protein plays a role in viral DNA packaging and that its function is serotype specific. Since this chimeric virus cannot package its own DNA, but produces all the components for packaging Ad7 DNA, it may be a more suitable helper virus for the growth of Ad7 gutted vectors for gene transfer.


2020 ◽  
Vol 63 (8) ◽  
pp. 1103-1129 ◽  
Author(s):  
Chenxi Liang ◽  
Tao Weitao ◽  
Lixia Zhou ◽  
Peixuan Guo

Biochemistry ◽  
2004 ◽  
Vol 43 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Qin Yang ◽  
Carlos Enrique Catalano

2008 ◽  
Vol 82 (13) ◽  
pp. 6654-6666 ◽  
Author(s):  
Valerie G. Preston ◽  
Jill Murray ◽  
Christopher M. Preston ◽  
Iris M. McDougall ◽  
Nigel D. Stow

ABSTRACT Studies on the herpes simplex virus type 1 UL25-null mutant KUL25NS have shown that the capsid-associated UL25 protein is required at a late stage in the encapsidation of viral DNA. Our previous work on UL25 with the UL25 temperature-sensitive (ts) mutant ts1204 also implicated UL25 in a role at very early times in the virus growth cycle, possibly at the stage of penetration of the host cell. We have reexamined this mutant and discovered that it had an additional ts mutation elsewhere in the genome. The ts1204 UL25 mutation was transferred into wild-type (wt) virus DNA, and the UL25 mutant ts1249 was isolated and characterized to clarify the function of UL25 at the initial stages of virus infection. Indirect immunofluorescence assays and in situ hybridization analysis of virus-infected cells revealed that the mutant ts1249 was not impaired in penetration of the host cell but had an uncoating defect at the nonpermissive temperature. When ts1249-infected cells were incubated initially at the permissive temperature to allow uncoating of the viral genome and subsequently transferred to the restrictive temperature, a DNA-packaging defect was evident. The results suggested that ts1249, like KUL25NS, had a block at a late stage of DNA packaging and that the packaged genome was shorter than the full-length genome. Examination of ts1249 capsids produced at the nonpermissive temperature revealed that, in comparison with wt capsids, they contained reduced amounts of UL25 protein, thereby providing a possible explanation for the failure of ts1249 to package full-length viral DNA.


Sign in / Sign up

Export Citation Format

Share Document