scholarly journals The Conserved Serine 177 in the Delta Antigen of Hepatitis Delta Virus Is One Putative Phosphorylation Site and Is Required for Efficient Viral RNA Replication

2001 ◽  
Vol 75 (19) ◽  
pp. 9087-9095 ◽  
Author(s):  
Jung-Jung Mu ◽  
Ding-Shinn Chen ◽  
Pei-Jer Chen

ABSTRACT Hepatitis delta virus (HDV) small delta antigen (S-HDAg) plays a critical role in virus replication. We previously demonstrated that the S-HDAg phosphorylation occurs on both serine and threonine residues. However, their biological significance and the exact phosphorylation sites of S-HDAg are still unknown. In this study, phosphorylated S-HDAg was detected only in the intracellular compartment, not in viral particles. In addition, the number of phosphorylated isoforms of S-HDAg significantly increased with the extent of viral replication in transfection system. Site-directed mutagenesis showed that alanine replacement of serine 177, which is conserved among all the known HDV strains, resulted in reduced phosphorylation of S-HDAg, while the mutation of the other two conserved serine residues (2 and 123) had little effect. The S177A mutant dramatically decreased its capability in assisting HDV RNA replication, with a preferential and profound impairment of the antigenomic RNA replication. Furthermore, the viral RNA editing, a step relying upon antigenomic RNA replication, was also abolished by this mutation. These results suggested that phosphorylation of S-HDAg, with serine 177 as a presumable site, plays a critical role in viral RNA replication, especially in augmenting the replication of antigenomic RNA.

Virology ◽  
1993 ◽  
Vol 197 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Fei-Ping Tai ◽  
Pei-Jer Chen ◽  
Fu-Lin Chang ◽  
Ding-Shinn Chen

2002 ◽  
Vol 76 (19) ◽  
pp. 9910-9919 ◽  
Author(s):  
Thomas B. Macnaughton ◽  
Michael M. C. Lai

ABSTRACT Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle, showing that HDV RNA synthesis was resistant to L-HDAg when it was overexpressed 3 days after HDV RNA replication had initiated. Finally, we showed that, contrary to conventional thinking, L-HDAg alone, at a certain molar ratio with HDV RNA, can initiate HDV RNA replication. Thus, L-HDAg does not inherently inhibit HDV RNA synthesis. Taken together, these results indicated that L-HDAg affects neither the rate of HDV RNA synthesis nor the final steady-state level of HDV RNA and that L-HDAg is unlikely to act as an inhibitor of HDV RNA replication in the natural HDV replication cycle.


Virology ◽  
2004 ◽  
Vol 319 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Jung-Jung Mu ◽  
Yeou-Guang Tsay ◽  
Li-Jung Juan ◽  
Tsai-Feng Fu ◽  
Wen-Hung Huang ◽  
...  

1998 ◽  
Vol 72 (4) ◽  
pp. 2806-2814 ◽  
Author(s):  
John L. Casey ◽  
John L. Gerin

ABSTRACT Characterizations of genetic variations among hepatitis delta virus (HDV) isolates have focused principally on phylogenetic analysis of sequences, which vary by 30 to 40% among three genotypes and about 10 to 15% among isolates of the same genotype. The significance of the sequence differences has been unclear but could be responsible for pathogenic variations associated with the different genotypes. Studies of the mechanisms of HDV replication have been limited to cDNA clones from HDV genotype I, which is the most common. To perform a comparative analysis of HDV RNA replication in genotypes I and III, we have obtained a full-length cDNA clone from an HDV genotype III isolate. In transfected Huh-7 cells, the functional roles of the two forms of the viral protein, hepatitis delta antigen (HDAg), in HDV RNA replication are similar for both genotypes I and III; the short form is required for RNA replication, while the long form inhibits replication. For both genotypes, HDAg was able to support replication of RNAs of the same genotype that were mutated so as to be defective for HDAg production. Surprisingly, however, neither genotype I nor genotype III HDAg was able to support replication of such mutated RNAs of the other genotype. The inability of genotype III HDAg to support replication of genotype I RNA could have been due to a weak interaction between the RNA and HDAg. The clear genotype-specific activity of HDAg in supporting HDV RNA replication confirms the original categorization of HDV sequences in three genotypes and further suggests that these should be referred to as types (i.e., HDV-I and HDV-III) rather than genotypes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Natali Abeywickrama-Samarakoon ◽  
Jean-Claude Cortay ◽  
Camille Sureau ◽  
Susanne Müller ◽  
Dulce Alfaiate ◽  
...  

2003 ◽  
Vol 77 (14) ◽  
pp. 7786-7795 ◽  
Author(s):  
Qiufang Cheng ◽  
Geetha C. Jayan ◽  
John L. Casey

ABSTRACT Hepatitis delta virus (HDV) produces two essential forms of the sole viral protein from the same open reading frame by using host RNA editing activity at the amber/W site in the antigenomic RNA. The roles of these two forms, HDAg-S and HDAg-L, are opposed. HDAg-S is required for viral RNA replication, whereas HDAg-L, which is produced as a result of editing, inhibits viral RNA replication and is required for virion packaging. Both the rate and amount of editing are important because excessive editing will inhibit viral RNA replication, whereas insufficient editing will reduce virus secretion. Here we show that for HDV genotype III, which is associated with severe HDV disease, HDAg-L strongly inhibits editing of a nonreplicating genotype III reporter RNA, while HDAg-S inhibits only when expressed at much higher levels. The different inhibitory efficiencies are due to RNA structural elements located ca. 25 bp 3′ of the editing site in the double-hairpin RNA structure required for editing at the amber/W site in HDV genotype III RNA. These results are consistent with regulation of amber/W editing in HDV genotype III by a negative-feedback mechanism due to differential interactions between structural elements in the HDV genotype III RNA and the two forms of HDAg.


2008 ◽  
Vol 82 (19) ◽  
pp. 9345-9358 ◽  
Author(s):  
Yen-Shun Chen ◽  
Wen-Hung Huang ◽  
Shiao-Ya Hong ◽  
Yeou-Guang Tsay ◽  
Pei-Jer Chen

ABSTRACT The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.


1998 ◽  
Vol 72 (3) ◽  
pp. 2089-2096 ◽  
Author(s):  
Yu Wei ◽  
Don Ganem

ABSTRACT Hepatitis delta virus (HDV) encodes two isoforms of its principal gene product, hepatitis delta antigen (HDAg). These two forms play distinctive and complementary roles in viral replication. Here we report that the large (LHDAg), but not the small (SHDAg), isoform of HDAg has the capacity to activate the expression of cotransfected genes driven by a variety of promoters, including the pre-S, S, and C promoters of hepatitis B virus. Mutational analysis of the C-terminal 19 amino acids unique to LHDAg shows that changing prolines to alanines in the two PXXP motifs in this region specifically ablates the activation function without abolishing another activity of LHDAg, namely, its ability to inhibit HDV RNA synthesis. However, C-terminal truncations that also disrupt these PXXP motifs only slightly diminished the activation function, indicating that the proline mutations were not acting by inactivating potential SH3 interactions that could be mediated by these motifs. Mutation of the isoprenylated cysteine to serine decreases but does not abolish the activation activity, and overexpression of SHDAg does not interfere with the transactivation function of LHDAg. Although the mechanism and biological significance of this activity of LHDAg remain unknown, the presence of this activity serves as yet another marker that functionally distinguishes this protein from the closely related isoform SHDAg.


Sign in / Sign up

Export Citation Format

Share Document