scholarly journals Design and Use of an Inducibly Activated Human Immunodeficiency Virus Type 1 Nef To Study Immune Modulation

2001 ◽  
Vol 75 (2) ◽  
pp. 834-843 ◽  
Author(s):  
Scott F. Walk ◽  
Melissa Alexander ◽  
Bernhard Maier ◽  
Marie-Louise Hammarskjold ◽  
David M. Rekosh ◽  
...  

ABSTRACT The Nef protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to enhance the infectivity of virus particles, downmodulate cell surface proteins, and associate with many intracellular proteins that are thought to facilitate HIV infection. One of the challenges in defining the molecular events regulated by Nef has been obtaining good expression of Nef protein in T cells. This has been attributed to effects of Nef on cell proliferation and apoptosis. We have designed a Nef protein that is readily expressed in T-cell lines and whose function is inducibly activated. It is composed of a fusion between full-length Nef and the estrogen receptor hormone-binding domain (Nef-ER). The Nef-ER is kept in an inactive state due to steric hindrance, and addition of the membrane-permeable drug 4-hydroxytamoxifen (4-HT), which binds to the ER domain, leads to inducible activation of Nef-ER within cells. We demonstrate that Nef-ER inducibly associates with the 62-kDa Ser/Thr kinase and is localized to specific membrane microdomains (lipid rafts) only after activation. Using this inducible Nef, we also compared the specific requirements for CD4 and HLA-A2 downmodulation in a SupT1 T-cell line. Half-maximal downmodulation of cell surface CD4 required very little active Nef-ER and occurred as early as 4 h after addition of 4-HT. In contrast, 50% downmodulation of HLA-A2 by Nef required 16 to 24 h and about 50- to 100-fold-greater concentrations of 4-HT. These data suggest that HLA-A2 downmodulation may require certain threshold levels of active Nef. The differential timing of CD4 and HLA-A2 downmodulation may have implications for HIV pathogenesis and immune evasion.

1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


2000 ◽  
Vol 181 (3) ◽  
pp. 927-932 ◽  
Author(s):  
Jacques Reynes ◽  
Pierre Portales ◽  
Michel Segondy ◽  
Vincent Baillat ◽  
Pascal André ◽  
...  

2003 ◽  
Vol 71 (11) ◽  
pp. 6668-6671 ◽  
Author(s):  
W. Evan Secor ◽  
Amil Shah ◽  
Pauline M. N. Mwinzi ◽  
Bryson A. Ndenga ◽  
Caroline O. Watta ◽  
...  

ABSTRACT Distribution of chemokine receptors CCR5 and CXCR4, which are also coreceptors for human immunodeficiency virus type 1 invasion of cells, was measured on the surfaces of CD4+ T cells and monocytes in peripheral blood samples from a group of Kenyan car washers. Patients with active schistosomiasis displayed higher cell surface densities of these receptors than did cured schistosomiasis patients.


Sign in / Sign up

Export Citation Format

Share Document