scholarly journals Cyclophilin A-Independent Replication of a Human Immunodeficiency Virus Type 1 Isolate Carrying a Small Portion of the Simian Immunodeficiency Virus SIVMACgag Capsid Region

2001 ◽  
Vol 75 (21) ◽  
pp. 10527-10531 ◽  
Author(s):  
Mikako Fujita ◽  
Akiko Yoshida ◽  
Maki Miyaura ◽  
Akiko Sakurai ◽  
Hirofumi Akari ◽  
...  

ABSTRACT Hybrid viruses between human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus strain mac (SIVMAC) are invaluable to various fields of HIV-1 research. To date, however, no replication-competent HIV-1 strain containing the gagcapsid (CA) region of SIVMAC has been reported. To obtain the viable gag gene chimeric virus in an HIV-1 background, seven HIV-1 strains carrying a part of SIVMAC CA or a small deletion in the CA region were constructed and examined for their biological and biochemical characteristics. While all the recombinants and mutants were found to express Gag and to produce progeny virions on transfection, only one chimeric virus, which has 18 bp of SIVgag CA sequence in place of the region encoding the HIV-1 CA cyclophilin A (CyPA)-binding loop, was infectious for human cell lines. Although this chimeric virus was unable to grow in monkey lymphocytic cells like wild-type (wt) HIV-1 did, it grew much better than wt virus in the presence of cyclosporin A in a human cell line which supports HIV-1 replication in a CyPA-dependent manner. These results indicate that the transfer of a small portion of the SIVMAC CA region to HIV-1 could confer the CyPA-independent replication potential of SIVMAC on the virus.

2004 ◽  
Vol 78 (4) ◽  
pp. 1843-1850 ◽  
Author(s):  
Mahfuz Khan ◽  
Lingling Jin ◽  
Ming Bo Huang ◽  
Lesa Miles ◽  
Vincent C. Bond ◽  
...  

ABSTRACT The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.


2004 ◽  
Vol 78 (10) ◽  
pp. 5423-5437 ◽  
Author(s):  
Christopher M. Owens ◽  
Byeongwoon Song ◽  
Michel J. Perron ◽  
Peter C. Yang ◽  
Matthew Stremlau ◽  
...  

ABSTRACT In cells of Old World and some New World monkeys, dominant factors restrict human immunodeficiency virus type 1 (HIV-1) infections after virus entry. The simian immunodeficiency virus SIVmac is less susceptible to these restrictions, a property that is determined largely by the viral capsid protein. For this study, we altered exposed amino acid residues on the surface of the HIV-1 capsid, changing them to the corresponding residues found on the SIVmac capsid. We identified two distinct pathways of escape from early, postentry restriction in monkey cells. One set of mutants that were altered near the base of the cyclophilin A-binding loop of the N-terminal capsid domain or in the interdomain linker exhibited a decreased ability to bind the restricting factor(s). Consistent with the location of this putative factor-binding site, cyclophilin A and the restricting factor(s) cooperated to achieve the postentry block. A second set of mutants that were altered in the ridge formed by helices 3 and 6 of the N-terminal capsid domain efficiently bound the restricting factor(s) but were resistant to the consequences of factor binding. These results imply that binding of the simian restricting factor(s) is not sufficient to mediate the postentry block to HIV-1 and that SIVmac capsids escape the block by decreases in both factor binding and susceptibility to the effects of the factor(s).


2003 ◽  
Vol 77 (15) ◽  
pp. 8237-8248 ◽  
Author(s):  
David R. M. Graham ◽  
Elena Chertova ◽  
Joanne M. Hilburn ◽  
Larry O. Arthur ◽  
James E. K. Hildreth

ABSTRACT Recent evidence suggests that human immunodeficiency virus type 1 (HIV-1) particles assemble and bud selectively through areas in the plasma membrane of cells that are highly enriched with glycosylphosphatidylinositol-anchored proteins and cholesterol, called lipid rafts. Since cholesterol is required to maintain lipid raft structure and function, we proposed that virion-associated cholesterol removal with the compound 2-hydroxy-propyl-β-cyclodextrin (β-CD) might be disruptive to HIV-1 and simian immunodeficiency virus (SIV). We examined the effect of β-CD on the structure and infectivity of cell-free virions. We found that β-CD inactivated HIV-1 and SIV in a dose-dependent manner and permeabilized the viral membranes, resulting in the loss of mature Gag proteins (capsid, matrix, nucleocapsid, p1, and p6) without loss of the envelope glycoproteins. SIV also lost reverse transcriptase (RT), integrase (IN), and viral RNA. IN appeared to be only slightly diminished in HIV-1, and viral RNA, RT, matrix, and nucleocapsid proteins were retained in HIV-1 but to a much lesser degree. Host proteins located internally in the virus (actin, moesin, and ezrin) and membrane-associated host proteins (major histocompatibility complex classes I and II) remained associated with the treated virions. Electron microscopy revealed that under conditions that permeabilized the viruses, holes were present in the viral membranes and the viral core structure was perturbed. These data provide evidence that an intact viral membrane is required to maintain mature virion core integrity. Since the viruses were not fixed before β-CD treatment and intact virion particles were recovered, the data suggest that virions may possess a protein scaffold that can maintain overall structure despite disruptions in membrane integrity.


2010 ◽  
Vol 84 (9) ◽  
pp. 4840-4844 ◽  
Author(s):  
Qiujia Shao ◽  
Yudi Wang ◽  
James E. K. Hildreth ◽  
Bindong Liu

ABSTRACT Proteasomal degradation of APOBEC3G is a critical step for human immunodeficiency virus type 1 (HIV-1) replication. However, the necessity for polyubiquitination of APOBEC3G in this process is still controversial. In this study, we showed that although macaque simian immunodeficiency virus (SIVmac) Vif is more stable than HIV-1 Vif in human cells, SIVmac Vif induces degradation of APBOEC3G as efficiently as HIV-1 Vif. Overexpression of APOBEC3G or lysine-free APOBEC3G stabilized HIV-1 Vif, indicating that APOBEC3G degradation is independent of the degradation of Vif. Furthermore, an in vivo polyubiquitination assay showed that lysine-free APOBEC3G was also polyubiquitinated. These data suggest that polyubiquitination of APOBEC3G, not that of HIV-1 Vif, is crucial for APOBEC3G degradation.


2003 ◽  
Vol 77 (2) ◽  
pp. 1163-1174 ◽  
Author(s):  
Ronald L. Willey ◽  
Russ Byrum ◽  
Michael Piatak ◽  
Young B. Kim ◽  
Michael W. Cho ◽  
...  

ABSTRACT An effective vaccine against the human immunodeficiency virus type 1 (HIV-1) will very likely have to elicit both cellular and humoral immune responses to control HIV-1 strains of diverse geographic and genetic origins. We have utilized a pathogenic chimeric simian-human immunodeficiency virus (SHIV) rhesus macaque animal model system to evaluate the protective efficacy of a vaccine regimen that uses recombinant vaccinia viruses expressing simian immunodeficiency virus (SIV) and HIV-1 structural proteins in combination with intact inactivated SIV and HIV-1 particles. Following virus challenge, control animals experienced a rapid and complete loss of CD4+ T cells, sustained high viral loads, and developed clinical disease by 17 to 21 weeks. Although all of the vaccinated monkeys became infected, they displayed reduced postpeak viremia, had no significant loss of CD4+ T cells, and have remained healthy for more than 15 months postinfection. CD8+ T-cell and neutralizing antibody responses in vaccinated animals following challenge were demonstrable. Despite the control of disease, virus was readily isolated from the circulating peripheral blood mononuclear cells of all vaccinees at 22 weeks postchallenge, indicating that immunologic control was incomplete. Virus recovered from the animal with the lowest postchallenge viremia generated high virus loads and an irreversible loss of CD4+ T-cell loss following its inoculation into a naïve animal. These results indicate that despite the protection from SHIV-induced disease, the vaccinated animals still harbored replication-competent and pathogenic virus.


2003 ◽  
Vol 77 (17) ◽  
pp. 9295-9304 ◽  
Author(s):  
Caroline Goujon ◽  
Loraine Jarrosson-Wuilleme ◽  
Jeanine Bernaud ◽  
Dominique Rigal ◽  
Jean-Luc Darlix ◽  
...  

ABSTRACT Heterologous lentiviral vectors (LVs) represent a way to address safety concerns in the field of gene therapy by decreasing the possibility of genetic recombination between vector and packaging constructs and the generation of replication-competent viruses. Using described LVs based on human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus MAC251 (SIVMAC251), we asked whether heterologous virion particles in which trans-acting factors belonged to HIV-1 and cis elements belonged to SIVMAC251 (HIV-siv) would behave as parental homologous vectors in all cell types. To our surprise, we found that although the heterologous HIV-siv vector was as infectious as its homologous counterpart in most human cells, it was defective in the transduction of dendritic cells (DCs) and, to a lesser extent, macrophages. In DCs, the main postentry defect was observed in the formation of two-long-terminal-repeat circles, despite the fact that full-length proviral DNA was being synthesized and was associated with the nucleus. Taken together, our data suggest that heterologous HIV-siv vectors display a cell-dependent infectivity defect, most probably at a post-nuclear entry migration step. As homologous HIV and SIV vectors do transduce DCs, we believe that these results underscore the importance of a conserved interaction between cis elements and trans-acting viral factors that is lost or suboptimal in heterologous vectors and essential only in the transduction of certain cell types. For gene therapy purposes, these findings indicate that the cellular tropism of LVs can be modulated not only through the use of distinct envelope proteins or tissue-specific promoters but also through the specific combinatorial use of packaging and transfer vector constructs.


2015 ◽  
Vol 89 (16) ◽  
pp. 8643-8650 ◽  
Author(s):  
Xiaoying Shen ◽  
Ryan Duffy ◽  
Robert Howington ◽  
Alethea Cope ◽  
Shanmugalakshmi Sadagopal ◽  
...  

To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.


Sign in / Sign up

Export Citation Format

Share Document