scholarly journals An Intact U5-Leader Stem Is Important for Efficient Replication of Simian Immunodeficiency Virus

2001 ◽  
Vol 75 (23) ◽  
pp. 11924-11929 ◽  
Author(s):  
Yongjun Guan ◽  
Karidia Diallo ◽  
James B. Whitney ◽  
Chen Liang ◽  
Mark A. Wainberg

ABSTRACT Previous work has shown that four deletions in simian immunodeficiency virus (SIV), termed SD1a, SD1b, SD1c, and SD6, which eliminated sequences at nucleotide positions 322 to 362, 322 to 370, 322 to 379, and 371 to 379, respectively, located downstream of the primer binding site, impaired viral replication capacity to different extents. Long-term culturing of viruses containing the SD1a, SD1b, and SD6 deletions led to revertants that possessed wild-type replication kinetics. We now show that these revertants retained the original deletions in each case but that novel additional mutations were also present. These included a large deletion termed D1 (nt +216 to +237) within the U5 region that was shown to be biologically relevant to reversion of both the SD1a and SD1b constructs. In the case of SD6, two compensatory point mutations, i.e., A+369G, termed M1, located immediately upstream of the SD6 deletion, and C+201T, termed M2, within U5, were identified and could act either singly or in combination to restore viral replication. Secondary structure suggests that an intact U5-leader stem is important in SIV for infectiousness and that the additional mutants described played important roles in restoration of this motif.

2000 ◽  
Vol 74 (19) ◽  
pp. 8854-8860 ◽  
Author(s):  
Yongjun Guan ◽  
James B. Whitney ◽  
Karidia Diallo ◽  
Mark A. Wainberg

ABSTRACT Simian immunodeficiency virus (SIV) infection of macaques is remarkably similar to that of human immunodeficiency virus type 1 (HIV-1) in humans, and the SIV-macaque system is a good model for AIDS research. We have constructed an SIV proviral DNA clone that is deleted of 97 nucleotides (nt), i.e., construct SD, at positions (+322 to +418) immediately downstream of the primer binding site (PBS) of SIVmac239. When this construct was transfected into COS-7 cells, the resultant viral progeny were severely impaired with regard to their ability to replicate in C8166 cells. Further deletion analysis showed that a virus termed SD1, containing a deletion of 23 nt (+322 to +344), was able to replicate with wild-type kinetics, while viruses containing deletions of 21 nt (+398 to +418) (construct SD2) or 53 nt (+345 to +397) (construct SD3) displayed diminished capacity in this regard. Both the SD2 and SD3 viruses were also impaired with regard to ability to package viral RNA, while SD1 viruses were not. The SD and SD3 constructs did not revert to increased replication ability in C8166 cells over 6 months in culture. In contrast, long-term passage of the SD2 mutated virus resulted in a restoration of replication capacity, due to the appearance of four separate point mutations. Two of these substitutions were located in leader sequences of viral RNA within the PBS and the dimerization initiation site (DIS), while the other two were located within two distinct Gag proteins, i.e., CA and p6. The biological relevance of three of these point mutations was confirmed by site-directed mutagenesis studies that showed that SD2 viruses containing each of these substitutions had regained a significant degree of viral replication capacity. Thus, leader sequences downstream of the PBS, especially the U5-leader stem and the DIS stem-loop, are important for SIV replication and for packaging of the viral genome.


2008 ◽  
Vol 83 (6) ◽  
pp. 2743-2755 ◽  
Author(s):  
Toshiyuki Miura ◽  
Mark A. Brockman ◽  
Arne Schneidewind ◽  
Michael Lobritz ◽  
Florencia Pereyra ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.


1999 ◽  
Vol 73 (4) ◽  
pp. 2790-2797 ◽  
Author(s):  
Silke Carl ◽  
A. John Iafrate ◽  
Jacek Skowronski ◽  
Christiane Stahl-Hennig ◽  
Frank Kirchhoff

ABSTRACT The simian immunodeficiency virus macC8 (SIVmacC8) variant has been used in a European Community Concerted Action project to study the efficacy and safety of live attenuated SIV vaccines in a large number of macaques. The attenuating deletion in the SIVmacC8nef-long terminal repeat region encompasses only 12 bp and is “repaired” in a subset of infected animals. It is unknown whether C8-Nef retains some activity. Since it seems important to use only well-characterized deletion mutants in live attenuated vaccine studies, we analyzed the relevance of the deletion, and the duplications and point mutations selected in infected macaques for Nef function in vitro. The deletion, affecting amino acids 143 to 146 (DMYL), resulted in a dramatic decrease in Nef stability and function. The initial 12-bp duplication resulted in efficient Nef expression and an intermediate phenotype in infectivity assays, but it did not significantly restore the ability of Nef to stimulate viral replication and to downmodulate CD4 and class I major histocompatibility complex cell surface expression. The additional substitutions however, which subsequently evolved in vivo, gradually restored these Nef functions. It was noteworthy that coinfection experiments in the T-lymphoid 221 cell line revealed that even SIVmac nef variants carrying the original 12-bp deletion readily outgrew an otherwise isogenic virus containing a 182-bp deletion in the nef gene. Thus, although C8-Nef is unstable and severely impaired in in vitro assays, it maintains some residual activity to stimulate viral replication.


2005 ◽  
Vol 79 (14) ◽  
pp. 9026-9037 ◽  
Author(s):  
Beda Joos ◽  
Alexandra Trkola ◽  
Marek Fischer ◽  
Herbert Kuster ◽  
Peter Rusert ◽  
...  

ABSTRACT Genetic diversity of viral isolates in human immunodeficiency virus (HIV)-infected individuals varies substantially. However, it remains unclear whether HIV-related disease progresses more rapidly in patients harboring virus swarms with low or high diversity and, in the same context, whether high or low diversity is required to induce potent humoral and cellular immune responses. To explore whether viral diversity predicts virologic control, we studied HIV-infected patients who received antiretroviral therapy (ART) for years before undergoing structured treatment interruptions (STI). Viral diversity before initiation of ART and the ability of the patients to contain viremia after STI and final cessation of treatment was evaluated. Seven out of 21 patients contained plasma viremia at low levels after the final treatment cessation. Clonal sequences encompassing the envelope C2V3C3 domain derived from plasma prior to treatment, exhibited significantly lower diversity in these patients compared to those derived from patients with poor control of viremia. Viral diversity pre-ART correlated with the viral replication capacity of rebounding virus isolates during STI. Neutralizing antibody activity against autologous virus was significantly higher in patients who controlled viremia and was associated with lower pretreatment diversity. No such association was found with binding antibodies directed to gp120. In summary, lower pretreatment viral diversity was associated with spontaneous control of viremia, reduced viral replication capacity and higher neutralizing antibody titers, suggesting a link between viral diversity, replication capacity, and neutralizing antibody activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rajesh Thippeshappa ◽  
Patricia Polacino ◽  
Shaswath S. Chandrasekar ◽  
Khanghy Truong ◽  
Anisha Misra ◽  
...  

We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vifNL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high-peak viremia or setpoint plasma viral loads, as observed during simian immunodeficiency virus (SIV) infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly 4years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame (ORF) in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic [Vpr-HSIV-vifNL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts] and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vifYu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20weeks. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolate C/196. The data indicate that the viruses selected during long-term infection acquired HIV-1 Vpr expression, suggesting the importance of Vpr for in vivo pathogenesis. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.


2001 ◽  
Vol 75 (23) ◽  
pp. 11920-11923 ◽  
Author(s):  
Yongjun Guan ◽  
Karidia Diallo ◽  
Mervi Detorio ◽  
James B. Whitney ◽  
Chen Liang ◽  
...  

ABSTRACT We used the simian immunodeficiency virus (SIV) molecular clone SIVmac239 to generate a deletion construct, termed SD2, in which we eliminated 22 nucleotides at positions +398 to +418 within the putative dimerization initiation site (DIS) stem. This SD2 deletion severely impaired viral replication, due to adverse effects on the packaging of viral genomic RNA, the processing of Gag proteins, and viral protein patterns. However, long-term culture of SD2 in either C8166 or CEMx174 cells resulted in restoration of replication capacity, due to two different sets of three compensatory point mutations, located within both the DIS and Gag regions. In the case of C8166 cells, both a K197R and a E49K mutation were identified within the capsid (CA) protein and the p6 protein of Gag, respectively, while the other point mutation (A423G) was found within the putative DIS loop. In the case of CEMx174 cells, two compensatory mutations were present within the viral nucleocapsid (NC) protein, E18G and Q31K, in addition to the same A423G substitution as observed with C8166 cells. A set of all three mutations was required in each case for restoration of replication capacity, and either set of mutations could be substituted for the other in both the C8166 and CEMx174 cell lines.


2021 ◽  
Author(s):  
Rajesh Thippeshappa ◽  
Patricia Polacino ◽  
Shaswath S Chandrasekar ◽  
Khanghy Truong ◽  
Anisha Misra ◽  
...  

We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vif-NL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high peak viremia or setpoint plasma viral loads, as observed during SIV infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly four years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic (Vpr- HSIV-vif-NL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts) and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vif-Yu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20 weeks. The passage 3 PTM showed peak viral loads greater than 105 viral RNA copies/ml. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolates C/196 and C/200. The data indicate that the biological isolates selected during long-term infection acquired HIV-1 Vpr expression to enhance their replication fitness in PTMs. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.


1998 ◽  
Vol 72 (7) ◽  
pp. 5589-5598 ◽  
Author(s):  
Stefan Pöhlmann ◽  
Stefan Flöss ◽  
Petr O. Ilyinskii ◽  
Thomas Stamminger ◽  
Frank Kirchhoff

ABSTRACT Large deletions of the upstream U3 sequences in the long terminal repeats (LTRs) of human immunodeficiency virus and simian immunodeficiency virus (SIV) accumulate in vivo in the absence of an intact nef gene. In the SIV U3 region, about 65 bp just upstream of the single NF-κB binding site always remained intact, and some evidence for a novel enhancer element in this region exists. We analyzed the transcriptional and replicative capacities of SIVmac239 mutants containing deletions or mutations in these upstream U3 sequences and/or the NF-κB and Sp1 binding sites. Even in the absence of 400 bp of upstream U3 sequences, the NF-κB site and all four Sp1 binding sites, the SIV promoter maintained about 15% of the wild-type LTR activity and was fully responsive to Tat activation in transient reporter assays. The effects of these deletions on virus production after transfection of COS-1 cells with full-length proviral constructs were much greater. Deletion of the upstream U3 sequences had no significant influence on viral replication when either the single NF-κB site or the Sp1 binding sites were intact. In contrast, the 26 bp of sequence located immediately upstream of the NF-κB site was essential for efficient replication when all core enhancer elements were deleted. A purine-rich site in this region binds specifically to the transcription factor Elf-1, a member of the etsproto-oncogene-encoded family. Our results indicate a high degree of functional redundancy in the SIVmac U3 region. Furthermore, we defined a novel regulatory element located immediately upstream of the NF-κB binding site that allows efficient viral replication in the absence of the entire core enhancer region.


Sign in / Sign up

Export Citation Format

Share Document