scholarly journals In vivo Serial Passaging of Human–Simian Immunodeficiency Virus Clones Identifies Characteristics for Persistent Viral Replication

2021 ◽  
Vol 12 ◽  
Author(s):  
Rajesh Thippeshappa ◽  
Patricia Polacino ◽  
Shaswath S. Chandrasekar ◽  
Khanghy Truong ◽  
Anisha Misra ◽  
...  

We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vifNL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high-peak viremia or setpoint plasma viral loads, as observed during simian immunodeficiency virus (SIV) infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly 4years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame (ORF) in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic [Vpr-HSIV-vifNL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts] and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vifYu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20weeks. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolate C/196. The data indicate that the viruses selected during long-term infection acquired HIV-1 Vpr expression, suggesting the importance of Vpr for in vivo pathogenesis. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.

2021 ◽  
Author(s):  
Rajesh Thippeshappa ◽  
Patricia Polacino ◽  
Shaswath S Chandrasekar ◽  
Khanghy Truong ◽  
Anisha Misra ◽  
...  

We previously reported that a human immunodeficiency virus type 1 with a simian immunodeficiency virus vif substitution (HSIV-vif-NL4-3) could replicate in pigtailed macaques (PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. However, infections did not result in high peak viremia or setpoint plasma viral loads, as observed during SIV infection of PTMs. Here, we characterized variants isolated from one of the original infected animals with CD4 depletion after nearly four years of infection to identify determinants of increased replication fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr protein due to interference from the vpx open reading frame in singly spliced vpr mRNA. To examine whether these viral genes contribute to persistent viral replication, we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of CXCR4-tropic (Vpr- HSIV-vif-NL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-infection from a PTM with depressed CD4 counts) and CCR5-tropic HSIV (Vpr+ HSIV-vif derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vif-Yu2). Interestingly, all infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent viral replication for more than 20 weeks. The passage 3 PTM showed peak viral loads greater than 105 viral RNA copies/ml. Infectious molecular clones (IMCs) recovered from the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolates C/196 and C/200. The data indicate that the biological isolates selected during long-term infection acquired HIV-1 Vpr expression to enhance their replication fitness in PTMs. Further passaging of HSIV-P3 IMCs in vivo may generate pathogenic variants with higher replication capacity, which will be a valuable resource as challenge virus in vaccine and cure studies.


1999 ◽  
Vol 73 (10) ◽  
pp. 8371-8383 ◽  
Author(s):  
Frank Kirchhoff ◽  
Jan Münch ◽  
Silke Carl ◽  
Nicole Stolte ◽  
Kerstin Mätz-Rensing ◽  
...  

ABSTRACT The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nefcan, to a large extent, functionally replace SIVmac nef in vivo.


2012 ◽  
Vol 86 (18) ◽  
pp. 9583-9589 ◽  
Author(s):  
Kathryn E. Stephenson ◽  
Hualin Li ◽  
Bruce D. Walker ◽  
Nelson L. Michael ◽  
Dan H. Barouch

A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8+T lymphocytes from vaccinated rhesus monkeys mediate viral inhibitionin vitroand whether these responses predict virologic control following SIV challenge. We observed that CD8+lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIVin vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4+and CD8+T lymphocyte responses. These findings demonstrate thatin vitroviral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates within vivovirologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Concepción Casado ◽  
Sara Marrero-Hernández ◽  
Daniel Márquez-Arce ◽  
María Pernas ◽  
Sílvia Marfil ◽  
...  

ABSTRACTA small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitnessin vitro, cytopathicity, and infection progressionin vivo. Therefore, we isolated full-lengthenvgenes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics.IMPORTANCEHIV-1 long-term nonprogressor elite controller patients, due to their permanent control of viral replication, have been the object of numerous studies to identify the factors responsible for this clinical phenotype. In this work, we analyzed the viral characteristics of the envelopes of viruses from a phylogenetic cluster of LTNP-EC patients. These envelopes showed ineffective binding to CD4 and the subsequent signaling activity to modify actin/tubulin cytoskeletons, which result in low fusion and deficient entry and infection capacities. These Env viral characteristics could explain the nonprogressor clinical phenotype of these patients. In addition, these inefficientenvviral properties were present in all viruses of the cluster, supporting the heritability of the viral phenotype.


2008 ◽  
Vol 83 (6) ◽  
pp. 2743-2755 ◽  
Author(s):  
Toshiyuki Miura ◽  
Mark A. Brockman ◽  
Arne Schneidewind ◽  
Michael Lobritz ◽  
Florencia Pereyra ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.


2010 ◽  
Vol 84 (9) ◽  
pp. 4840-4844 ◽  
Author(s):  
Qiujia Shao ◽  
Yudi Wang ◽  
James E. K. Hildreth ◽  
Bindong Liu

ABSTRACT Proteasomal degradation of APOBEC3G is a critical step for human immunodeficiency virus type 1 (HIV-1) replication. However, the necessity for polyubiquitination of APOBEC3G in this process is still controversial. In this study, we showed that although macaque simian immunodeficiency virus (SIVmac) Vif is more stable than HIV-1 Vif in human cells, SIVmac Vif induces degradation of APBOEC3G as efficiently as HIV-1 Vif. Overexpression of APOBEC3G or lysine-free APOBEC3G stabilized HIV-1 Vif, indicating that APOBEC3G degradation is independent of the degradation of Vif. Furthermore, an in vivo polyubiquitination assay showed that lysine-free APOBEC3G was also polyubiquitinated. These data suggest that polyubiquitination of APOBEC3G, not that of HIV-1 Vif, is crucial for APOBEC3G degradation.


1994 ◽  
Vol 179 (1) ◽  
pp. 101-113 ◽  
Author(s):  
M D Miller ◽  
M T Warmerdam ◽  
I Gaston ◽  
W C Greene ◽  
M B Feinberg

Considerable controversy and uncertainty have surrounded the biological function of the Human Immunodeficiency Virus (HIV)-1 nef gene product. Initial studies suggested that this early, nonstructural viral protein functioned as a negative regulatory factor; thus, it was proposed to play a role in establishing or maintaining viral latency. In contrast, studies in Simian Immunodeficiency Virus (SIV)mac-infected rhesus monkeys have suggested that Nef is not a negative factor but rather plays a central role in promoting high-level viral replication and is required for viral pathogenesis in vivo. We sought to define a tissue culture system that would approximate the in vivo setting for virus infection in order to assess the role of HIV-1 Nef in viral replication. We show that infection of mitogen-activated peripheral blood mononuclear cells (PBMC) with Nef+ HIV results in enhanced replication as evidenced by earlier gag p24 expression when compared with infections performed with nef mutant viruses. Moreover, when unstimulated freshly isolated PBMC are infected with Nef+ and Nef- viruses and then subsequently activated with mitogen, the Nef-induced difference in viral replication kinetics is even more pronounced, with the Nef- viruses requiring much more time in culture for appreciable growth. A positive effect of Nef on viral replication was also observed in primary macrophages infected with a recombinant of YU-2, a patient-derived molecular clone with macrophage tropism. These positive effects of Nef on viral replication are dependent on the initial multiplicity of infection (MOI), in that infections of unstimulated PBMC at low MOI are most dependent upon intact nef for subsequent viral growth. We now provide evidence that the Nef+ HIV is more infectious than Nef- HIV from both a tissue culture infectious dose analysis, and a single-cell HIV infection assay. In the latter case, we demonstrate that infection with equivalent doses of HIV based on virion-associated gag p24 yields five- to sixfold more infected cells if Nef+ viral stocks were used. Furthermore, we find that the differential infectivity is not dependent on CD4 down-regulation as Nef+ virus produced from transfected COS cells lacking CD4 is also more infectious. However, normalization of PBMC infections to equivalent infectivity between that of the Nef+ and Nef- viruses continues to reveal delayed viral replication in the absence of Nef, suggesting that secondary viral spread in PBMC is also enhanced in Nef+ infections. We demonstrate this directly by showing a 13-15-fold increase in infectivity of PBMC-derived Nef+ HIC.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 75 (23) ◽  
pp. 11924-11929 ◽  
Author(s):  
Yongjun Guan ◽  
Karidia Diallo ◽  
James B. Whitney ◽  
Chen Liang ◽  
Mark A. Wainberg

ABSTRACT Previous work has shown that four deletions in simian immunodeficiency virus (SIV), termed SD1a, SD1b, SD1c, and SD6, which eliminated sequences at nucleotide positions 322 to 362, 322 to 370, 322 to 379, and 371 to 379, respectively, located downstream of the primer binding site, impaired viral replication capacity to different extents. Long-term culturing of viruses containing the SD1a, SD1b, and SD6 deletions led to revertants that possessed wild-type replication kinetics. We now show that these revertants retained the original deletions in each case but that novel additional mutations were also present. These included a large deletion termed D1 (nt +216 to +237) within the U5 region that was shown to be biologically relevant to reversion of both the SD1a and SD1b constructs. In the case of SD6, two compensatory point mutations, i.e., A+369G, termed M1, located immediately upstream of the SD6 deletion, and C+201T, termed M2, within U5, were identified and could act either singly or in combination to restore viral replication. Secondary structure suggests that an intact U5-leader stem is important in SIV for infectiousness and that the additional mutants described played important roles in restoration of this motif.


1999 ◽  
Vol 191 (11) ◽  
pp. 1921-1932 ◽  
Author(s):  
Karin J. Metzner ◽  
Xia Jin ◽  
Fred V. Lee ◽  
Agegnehu Gettie ◽  
Daniel E. Bauer ◽  
...  

The role of CD8+ T lymphocytes in controlling replication of live, attenuated simian immunodeficiency virus (SIV) was investigated as part of a vaccine study to examine the correlates of protection in the SIV/rhesus macaque model. Rhesus macaques immunized for &gt;2 yr with nef-deleted SIV (SIVmac239Δnef) and protected from challenge with pathogenic SIVmac251 were treated with anti-CD8 antibody (OKT8F) to deplete CD8+ T cells in vivo. The effects of CD8 depletion on viral load were measured using a novel quantitative assay based on real-time polymerase chain reaction using molecular beacons. This assay allows simultaneous detection of both the vaccine strain and the challenge virus in the same sample, enabling direct quantification of changes in each viral population. Our results show that CD8+ T cells were depleted within 1 h after administration of OKT8F, and were reduced by as much as 99% in the peripheral blood. CD8+ T cell depletion was associated with a 1–2 log increase in SIVmac239Δnef plasma viremia. Control of SIVmac239Δnef replication was temporally associated with the recovery of CD8+ T cells between days 8 and 10. The challenge virus, SIVmac251, was not detectable in either the plasma or lymph nodes after depletion of CD8+ T cells. Overall, our results indicate that CD8+ T cells play an important role in controlling replication of live, attenuated SIV in vivo.


Sign in / Sign up

Export Citation Format

Share Document